Spelling suggestions: "subject:"radar engineering"" "subject:"radar ingineering""
1 |
Automatic generation of a floor plan from a 3D scanned model: Making the Analogue World DigitalWilson, Bradlee Kenneth 04 February 2019 (has links)
The processing of three-dimensional (3D) room models is an area of research undertaken by many academics and hobbyists due to multiple uses derived from the information obtained - such as the generation of a floor plan; an example of bridging the real and digital world. A floor plan is required when an existing room, floor, or building requires alteration. By having the floor plan in the digital domain it allows the user to alter the room via simulation and render the environment in a life-like manner to determine if the alterations will suffice. This is done using Computer Aided Design Software (CAD). Designing a new room or building would be done using CAD software. However, not all building's digital files are readily available or exist - making the creation of a floor plan necessary. The floor plan can created up by a person on pen and paper, or with using software tools and sensors. Commercial systems exist for this task but there are no automated, open-source systems that can do the same. Current research tends to focus on the processing algorithms and not the sensors or methods for capturing the environment. This dissertation deals with testing and evaluating off-the-shelf (OTS) sensors and the processing of 3D modelled rooms captured with one of these sensors. The tests performed on the OTS sensors determine the overall accuracy of the sensors for 3D room modelling. The rationale for designing and conducting these tests is to provide the community with suggested practical tests to assist in selecting an OTS sensor for 3D room modelling. The 3D room models are captured using an opensource application and are imported into custom software. The 3D models undergo pre-processing algorithms producing 2D results, which were further processed to determine the walls of rooms. The dimension information about these features are used to create a 2D floor plan. 3D modelled environments are inherently noisy, requiring efficient pre-processing to remove the noise without hampering processing performance of the 3D model. One of the largest contributors to noise and accuracy is the sensor. Selecting the appropriate sensor can mitigate the need for complex pre-processing algorithms and will improve overall processing time. The project was able to extract dimension information within an acceptable error. The tests that were designed and used for sensor testing were able to determine which sensor was the better choice for 3D room modelling. The optimal sensor was found to be Microsoft's Kinect1 . Tests were performed in which the Microsoft Kinect was required to map a room. The results show that dimensional information about the given scene could be successfully extracted with an average error of 4.60 %.
|
2 |
GSM based Communication-Sensor (CommSense) SystemBhatta, Abhishek 16 August 2018 (has links)
Using communication signals for radar applications has been a major area of research in radar engineering. In the recent years, due to the widely available wireless signals, a new area of research called commensal radars has emerged. Commensal radars use available wireless Radio Frequency (RF) signals to detect and track targets of interest. This is achieved by placing two antennas, one towards the transmitting base station and the other towards the surveillance area. The signal received by these two antennas are correlated to determine the location and velocity of the target. When a signal passes through a channel, it reflects off the obstacles within its path. These reflections usually degrade quality of the signal and cause interference to the telecommunication systems. To mitigate the effects of the channel on a signal these systems transmit a known bit sequence within each frame. Our goal, with this thesis, is to design and implement a working prototype of a novel architecture for the commensal radar system, which uses these known bit sequences to extract the channel information and determine events of interest. The major novelties of the system are as follows. Firstly, this system will be built upon existing communication systems using Software Defined Radio (SDR) technology. Secondly, this design eliminates the need for a reference antenna, which reduces the cost of the system and creates an opportunity to make the system portable. We name this system Communication-Sensing (CommSense). Since, our plan is to use Global System for Mobile Communication (GSM) as the parent system for the prototype development, we decide to update the name to GSM based Communication-Sensing (GSM-CommSense) system. This thesis begins with theoretical analysis of the feasibility of the GSM-CommSense system. First of all, we perform a link budget analysis to determine the power requirements for the system. Then we calculate the ambiguity function and Cram´er-Rao Lower Bound (CRLB) for a two-path received signal model. With encouraging theoretical results, we design a prototype of the system that can capture real GSM base station broadcast signals. After the design of the GSMCommSense system, we capture channel data from multiple locations with varying environmental conditions. The aim for this set of experiment is to be able to distinguish between different environmental conditions. Then, we performed statistical analysis on the data by means of Probability Density Function (PDF) fitting, a goodness-of-fit test called chi-square test and a clustering algorithm called Principal Components Analysis (PCA). We have presented the results from each analysis and discussed them in detail. Upon, receiving positive results in each step we have decided to move towards using learning algorithms to categorise the data captured by the system. We have compared two widely accepted supervised learning algorithms, called Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP). The results showed that with the current hardware capabilities of the system and the amount of data available per GSM frame, the performance of SVM is better than MLP. Thus, we have used SVM to classify two events of detection and classification across a wall. We have presented our findings and discussed the results in detail. We conclude our current work and provide scope for future work in development and analysis of the GSM-CommSense system.
|
3 |
A Novel Chip Resistor Spacecloth For Radar Absorbing MaterialsSudhendra, Chandrika 09 1900 (has links)
Spacecloth design and development is vital and crucial in Radar Absorbing Materials (RAM) for achieving Low Observability in an Aircraft or an Unmanned Air Vehicle(UAV). The RAM design translates into the spacecloth design. The spacecloths form the constituent layers in a broadband Jaumann absorber in which case they have to be designed for various values of surface resistivity. The design specifications of spacecloth(s) in RAMS is well understood and documented in literature. But the design of spacecloth hitherto, has been the domain of materials' scientists wherein the specified properties of the spacecloth are achieved by an iterative, trial and error process, by mixing various constituents in different proportions to get the design specified surface resistivity in the final end-product. In an effort to bridge this gap, a novel spacecloth for RAM applications is proposed in the thesis. It is proposed that a repetitive geometrical grid network of chip resistors simulates spacecloth. The sheet resistivity of the spacecloth is derived by analyzing various geometries like square, rectangle, triangle and hexagonal grids. The transmission and reflection loss for the chip resistor spacecloth is derived. The design of chip resistor spacecloths for operation at S and C bands is given followed by experimental verification using waveguide simulator experiments. Numerical study of multilayer RAM has been carried out with exponential taper variation of surface resistivities for constituent spacecloth layers and design curves are given for multilayer RAM both for normal and oblique incidence for TE and TM polarizations.
|
4 |
Scattering From Chiral And Chirally Coated BodiesSharma, Reena 10 1900 (has links) (PDF)
No description available.
|
5 |
Application Of High Frequency Natural Resonances Extracted From Electromagnetic Scattering Response For Discrimination Of Radar Targets With Minor VariationsMenon, K Rajalakshmi 04 1900 (has links)
Radars, as the name suggests, were traditionally used for Radio Detection and Ranging. Nevertheless, advances in high resolution electromagnetic simulations, Ultra Wide-Band sources, signal processing and computer technologies have resulted in a possible perception of radars as sensors for target discrimination. In this thesis, the feasibility of discrimination between targets even with minor variations in structure and material composition on the basis of radar echoes is effectively demonstrated.
It is well-known that the echoes from any target are affected by its natural frequencies which are dependent only on the shape and material composition of the target, and independent of the aspect angle or the incident waveform. The E-pulse technique is based on the fact that incident waveforms can be designed that uniquely annihilate the echoes from chosen regions of a target, and forms the basis of the method of discrimination proposed in this thesis.
Earlier methods reported in the literature, effectively discriminated only between different classes of targets with substantial variations in the overall dimensions of the body. Discrimination of targets of the same class with a minor structural modification or with a material coating on specific areas was rather difficult. This thesis attempts and successfully validates a method which comprehensively addresses this problem. The key idea of this method is to use the higher frequency resonances (which characterise the finer details of a target) in the E-pulse technique.
An obviously important aspect of target discrimination is therefore that of precisely estimating the natural frequencies for each target and understanding the changes in these frequencies, and their associations with the changes in structure and material composition. Current approaches to determine these frequencies are either based In the time or frequency
domains. While the latter approach comprises the computation of the roots of a related determinantal equation, in the time domain, the natural frequencies are extracted from the
response of a target to an impulse. Such a response can either be generated from actual experiments or by simulating the scattering response using Computational Electromagnetic (CEM) techniques. In this work, the impulse response is obtained from the frequency response of the scatterers in the frequency range of interest. Since no single CEM technique can effectively cover the entire range of frequencies needed for the E-Pulse synthesis. The Method of Moments and Physical Optics have been used for low and high frequency scattering respectively. The results obtained using the latter technique are validated by comparing with those obtained using Method of Moments at the transition frequencies and Geometrical Theory of Diffraction (GTD).
The natural frequencies (i.e., poles of a corresponding transfer function) are extracted from the impulse response using Prony's algorithm. One of the parameters in this method is the number of such poles (i.e.. the order of the transfer function) present in the response, and the accuracy of the computed pole values depends on this assumed order. Here, the Hankel singular values of a transfer function is used to estimate the number of poles. This in turn implies that a specific norm of the error between a transfer function corresponding to the frequency response generated earlier, and a transfer function with an assumed order obtained using Prony's method is minimised.
In the thesis, a wide range of target shapes are considered for purposes of illustration: wires, cylinders, spheres, plates and complex bodies such as aircraft, and the discrimination capability is demonstrated by introducing minor perturbations in their shape and/or material composition. .The following cases are considered here: (a) Wires: Conducting wires with a protrusion in one segment; conducting wire from another coated with a dielectric in a segment, (b) Cylinders: Conducting cylinders with one perturbed; conducting cylinders with a portion scrapped off in the middle, (c) Plates: Conducting plates with a elongation on one comer; conducting plate with another one with a hole in the centre, (d) Spheres: Conducting spheres with different radii; conducting spheres with Radar Absorbing Material coated spheres with different coating thickness; conducting spheres with chiral coated spheres with varying coating thickness, (e) Aircraft: Canonical model of MiG-29 aircraft from a similar one with stores placed under the wing.
|
Page generated in 0.0603 seconds