Spelling suggestions: "subject:"badial"" "subject:"fadial""
281 |
Estimation of Parameters in Support Vector RegressionChan, Yi-Chao 21 July 2006 (has links)
The selection and modification of kernel functions is a very important problem in the field of support vector learning. However, the kernel function of a support vector machine has great influence on its performance. The kernel function projects the dataset from the original data space into the feature space, and therefore the problems which couldn¡¦t be done in low dimensions could be done in a higher dimension through the transform of the kernel function. In this thesis, we adopt the FCM clustering algorithm to group data patterns into clusters, and then use a statistical approach to calculate the standard deviation of each pattern with respect to the other patterns in the same cluster. Therefore we can make a proper estimation on the distribution of data patterns and assign a proper standard deviation for each pattern. The standard deviation is the same as the variance of a radial basis function. Then we have the origin data patterns and the variance of each data pattern for support vector learning. Experimental results have shown that our approach can derive better kernel functions than other methods, and also can have better learning and generalization abilities.
|
282 |
Radial Point Interpolation Method For Plane Elasticity ProblemsYildirim, Okan 01 June 2010 (has links) (PDF)
Meshfree methods have become strong alternatives to conventional numerical methods used in solid mechanics after significant progress in recent years. Radial point interpolation method (RPIM) is a meshfree method based on Galerkin formulation and constructs shape functions which enable easy imposition of essential boundary conditions. This thesis analyses plane elasticity problems using RPIM. A computer code implementing RPIM for the solution of plane elasticity problems is developed. Selected problems are solved and the effect of shape parameters on the accuracy of RPIM with and without polynomial terms added in the interpolation is studied. The optimal shape parameters are determined for plane elasticity problems.
|
283 |
Fabrication Of Silicon Nanowires By Electroless Etching And Investigation Of Their Photovoltaic ApplicationsOzdemir, Baris 01 August 2011 (has links) (PDF)
Silicon is the most important semiconducting material for optoelectronics owing to its suitable and tunable physical properties. Even though there are several alternatives, silicon based solar cells are still the most widely produced and commercially feasible system. Extensive efforts have been spent in order to increase the efficiency and decrease the cost of these systems. The studies that do not focus on replacement of the semiconducting material, mostly concentrate on the developments that could be brought by nanotechnological approaches. In this aspect, utilization of silicon nanowires has been predicted to improve the efficiency of the silicon based solar cell technology. Moreover, besides solar cells, silicon nanowires have been investigated for many other electronic systems such as thermoelectrics, light emitting diodes, biological/chemical sensors, photodetectors and lithium ion
v
batteries. Therefore, production of silicon nanowires through a cost-effective and well controlled method could make important contributions to many fields. In this thesis, electroless etching method, which is a novel and solution based method enabling vertically aligned silicon nanowire array fabrication over large areas, is investigated. A detailed parametric study resulting in a full control over the resultant nanowire morphology is provided. The parameters affecting the structure have been determined as etching time, solution temperature, solution concentration, pressure and starting wafer characteristics. The results show that electroless etching method could replace the conventional silicon nanowire fabrication methods. It was shown that specific nanowire lengths for any application, can be obtained simply by adjusting the parameters of electroless etching system. One of the most crucial features of vertically aligned silicon nanowire arrays is their remarkable antireflective properties. The optical reflectivity measurements showed that 42% reflectivity of pristine polished silicon wafer decreases down to 1% following fabrication of silicon nanowire arrays on their surface. This unique characteristic reveals that these nanowires could be used as antireflective surfaces in solar cells. Moreover, it was determined that p-n heterojunctions that are formed by silicon nanowires, namely radial heterojunctions, would yield higher efficiencies compared to planar heterojunctions because of the dramatic increase in the charge carrier collection efficiency and orthogonal photon absorption. On this subject, n-type silicon nanowire arrays were fabricated by electroless etching followed by drop casting Poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT:PSS) organic layer on these nanowires as the complementary layer, forming the radial heterojunction. The energy conversion efficiency of silicon nanowire / PEDOT: PSS device was found as 5.30%, while planar silicon / PEDOT: PSS control device displayed only 0.62% efficiency. Developments and optimizations in both the electroless etching method and solar cell models could lead to important developments in photovoltaic industry.
|
284 |
Experimental evaluation of wire mesh for design as a bearing damperChoudhry, Vivek Vaibhav 15 November 2004 (has links)
Wire mesh vibration dampers have been the subject of some very encouraging experiments at the Texas A&M Turbomachinery laboratories for the past several years and have emerged as an excellent replacement for squeeze film dampers. Their capability to provide damping for a wide range of temperatures (even cryogenic), fluid free operation and ability to perform even when soaked with lubricants makes them a suitable option as a bearing damper. Experiments were conducted to investigate the effect of design parameters like axial thickness and axial compression that influence the characteristics of wire mesh as a bearing damper. Two groups of wire mesh were tested to show that the stiffness and damping are directly proportional to the axial thickness, if all the other parameters are kept constant. Tests on four wire mesh donuts of different radial thickness showed that stiffness and damping vary inversely with radial thickness. Rigorous tests were also conducted to quantify the effects of axial compression, radial interference and displacement amplitude on stiffness and damping of the wire mesh. Another novel kind of mesh damper tested was comprised of two small segments instead of a whole donut. The results showed that wire mesh exhibited good damping characteristics even when used in small segments. Empirical expressions were developed using MathCADTM worksheets, and an existing ExcelTM design worksheet was modified to include these factors. The effect of frequency variation was also included to give a comprehensive design tool for wire mesh. A new design worksheet was developed that can predict rotordynamic coefficients for a wire mesh bearing damper having a different size as well as different installation and operational conditions.
|
285 |
High temperature, permanent magnet biased, homopolar magnetic bearing actuatorHossain, Mohammad Ahsan 30 October 2006 (has links)
The EEC (Electron Energy Corporation) in conjunction with the National Aeronautics and Space Administration is researching the magnetic bearings for an alternative to conventional journal or ball bearings. The purpose of this research was to design and develop a high-temperature (1000úF) hybrid Magnetic Bearing using High Temperature Permanent Magnets (HTPM), developed by the EEC for high performance jet engines at high speeds that supply loads of 500 lbf. Another objective is to design and build a test rig fixture to measure the load capacity of the designed bearing. The permanent magnet bias of the Homopolar radial magnetic bearing reduces the amount of current required for magnetic bearing operation. This reduces the power loss due to the coil current resistance and improves the system efficiency because the magnetic field of the HTPM can suspend the major portion of the static load on bearing. A high temperature radial magnetic bearing was designed via an iterative search employing 3D finite element based electromagnetic field simulations. The bearing was designed to produce 500 lbf of force at 1000úF and the design weight is 48 lbs. The bias flux of the Homopolar radial bearing is produced by EEC HTPM to reduce the related ohmic losses of an electromagnetic circuit significantly. An experimental procedure was developed to measure actual load capacity of the designed bearing at the test rig. All the results obtained from the experiment were compiled and analyzed to determine the relation between bearing force, applied current and temperature.
|
286 |
A New Approach to Mitigate the Impact of Distributed Generation on the Overcurrent Protection Scheme of Radial Distribution FeedersFunmilayo, Hamed 14 January 2010 (has links)
Increased Distributed Generation (DG) presence on radial distribution feeders is
becoming a common trend. The existing Overcurrent Protection (OCP) scheme on such feeders
consists mainly of overcurrent protection devices (OCPDs) such as fuses and reclosers. When
DG is placed on the remote end of a 3-phase lateral, the radial configuration of the feeder is lost.
As a result, OCP issues may arise which lead to permanent outages even when the fault is
temporary. This thesis presents a new approach that revises the existing OCP scheme of a radial
feeder to address the presence of DG. The fuses on the laterals with DGs are removed and multifunction
recloser/relays (MFRs) are added to address three specific OCP issues; fuse fatigue,
nuisance fuse blowing, and fuse misoperation.
The new approach requires no communication medium, provides backup protection for
the DG unit, and allows the remaining laterals to retain their existing protective devices. The
results are reported using the IEEE 34 node radial test feeder to validate the new approach and
the IEEE 123 node radial test feeder to generalize the approach. The new approach completely
mitigated the fuse misoperation and nuisance fuse blowing issues and most of the fuse fatigue
issues that were present on the radial test feeders. Specifically, the approach demonstrates that
coordination between the existing protection devices on radial distribution feeders is maintained
in the presence of DG.
|
287 |
Dynamic Characteristic Analysis for a Static Synchronous Series Compensator Using Intelligent ControllersLai, Cheng-ying 03 July 2008 (has links)
The static synchronous series compensator (SSSC) is a series controller of Flexible AC Transmission Systems (FACTS). It can be controlled by Thyristors, it also has the ability of fast control adjustments and high frequency operation. Through impedance compensation, it is able to control the magnitude and directions of the real power flow in the transmission system.
In order to achieve a fast and steady response for real power control in power systems, this thesis proposed a unified intelligent controller, which consists of RBFNN and GA for the SSSC to provide better control features for real power control in the dynamic operations of power systems. Finally, the simulation results of the proposed controllers is compared with the conventional proportional plus integral (PI) controllers to demonstrate the superiority and effectiveness of the unified intelligent controller.
|
288 |
Study of Standard Voltage Setting of a Primary SubstationKao, Tzu-yu 04 July 2009 (has links)
Stability of the power quality is one of the objectives that power companies always try to assure. With energy shortage and the increases of fuel cost over years, reduction of expenses in all areas is another effort of the power company. Dealing with the above problems, Taiwan Power Company sets up a standard voltage for secondary side of each primary substation. Standard voltage is a commitment of expected 69kV primary substation bus voltage. A proper setting of the standard voltage can reduce voltage variation, in the secondary substation, and reduce the operation frequencies of the on load tap changer. Besides, it can prolong the service life and the maintenance cycle, and it can also reduce maintenance cost of each main transformer.
This study proposes a method to calculate the standard voltage to improve the shortcomings that the voltage used to be set up with experience rule. The load and voltage data were used to build a neural network model. Improved particle swarm optimizer was used to find the parameters of the radial basis function neural network in order to build an efficient network. This network uses improved particle swarm optimizer again to the standard voltage. The proposed approach has been verified by the comparison of winter and summer standard voltages on the Tainan primary substation of taipower with accurate results.
|
289 |
El Programa radial Surco Norteño y su rol como una radio comunitaria-Pítipo-LambayequeSánchez Dávila, Flor Jannet January 2008 (has links)
No description available.
|
290 |
Morfología del periodismo radial y su relación con el desarrollo cultural de PascoCharry Aysanoa, Pedro Amílcar January 2009 (has links)
No description available.
|
Page generated in 0.0333 seconds