• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seismic source properties of slow and fast earthquakes in the Guerrero seismic gap, Mexico / メキシコ・ゲレロ地震空白域周辺の地震とスロー地震の震源特性

Plata Martínez, Raymundo Omar 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23454号 / 理博第4748号 / 新制||理||1681(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 伊藤 喜宏, 准教授 宮澤 理稔, 教授 久家 慶子 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
2

Analysis of Seismic Signatures Generated from Controlled Methane and Coal Dust Explosions in an Underground Mine

Murphy, Michael M. 10 December 2008 (has links)
Examination of seismic records during the time interval of the Sago Mine disaster in 2006 revealed a small amplitude signal possibly associated with an event in the mine. Although the epicenter of the signature was located in the vicinity where the explosion occurred, it could not be unequivocally attributed to the explosion. More needs to be understood about the seismicity from mine explosions in order to properly interpret critical seismic information. A seismic monitoring system located at NIOSH's Lake Lynn Experimental Mine has monitored nineteen experimental methane and dust based explosions. The objective of the study was to analyze seismic signatures generated by the methane and dust explosions to begin understanding their characteristics at different distances away from the source. The seismic signatures from these different events were analyzed using standard waveform analysis procedures in order to estimate the moment magnitude and radiated seismic energy. The procedures used to analyze the data were conducted using self-produced programs not available with existing commercial software. The signatures of the explosions were found to be extremely complex due a combination of mine geometry and experimental design, both of which could not be controlled for the purposes of the study. Geophones located approximately 600 m (1970 ft) and over from the source collected limited data because of the attenuation of the seismic waves generated by the methane explosion. A combination of the methods used to characterize the seismic signatures allowed for differentiation between experimental designs and the size of the explosion. The factors having the largest impact on the signatures were the mine geometry, size of the methane explosion, construction of the mine seal and location of the mine seal. A relationship was derived to correlate the radiated seismic energy to the size of the explosion. Recommendations were made, based upon the limitations of this study, on methods for better collection of seismic data in the future. / Ph. D.

Page generated in 0.0741 seconds