• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Temperature Seismic Monitoring for Enhanced Geothermal Systems - Implementing a Control Feedback Loop to a Prototype Tool by Sandia National Laboratories

Howard, Panit 05 June 2012 (has links)
Geothermal energy can make an important contribution to the U.S. energy portfolio. Production areas require seismic monitoring tools to develop and monitor production capability. This paper describes modifications made to a prototypical seismic tool to implement improvements that were identified during previous tool applications. These modifications included changing the motor required for mechanical coupling the tool to a bore-hole wall. Additionally, development of a closed-loop process control utilized feedback from the contact force between the coupling arm and bore-hole wall. Employing a feedback circuit automates the tool deployment/anchoring process and reduces reliance on the operator at the surface. The tool components were tested under high temperatures and an integrated system tool test demonstrated successful tool operations. / Master of Science
2

Interferometric Methods for Seismic Monitoring in Industrial Environments

Dales, Philippe 19 October 2018 (has links)
As the global demand for energy and natural resources continues to increase so does our interaction with Earth's near surface through resource extraction and waste injection. In monitoring these interaction, seismology plays a central role. The focus of this work is on improving the detection and localization of seismic sources, a fundamental problem in seismology. After discussing the strengths and limitations of existing methods for source detection and localization, I develop a solution based on a beamforming approach that uses cross-correlation functions in a maximum likelihood search for sources of seismic energy. I call this method InterLoc, short for `interferometric locator', and apply it to data recorded at two active underground mines to demonstrate its effectiveness in monitoring both impulsive sources and persistent sources. Next, I demonstrate how persistent seismic sources, typically seen as contaminants, can be used directly to measure small changes in the medium between a source and either source-station pairs. This method relies on the ability to locate and monitor source activity and then use this information to identify and select cross-correlation functions to isolate each source of interest. From the resulting cross-correlations, it is possible to measure small temporal changes in the waveforms. To demonstrate this method, I show how ore-crushers can be used to track the growth of a block cave by measuring changes in traveltimes due to ray paths having to circumvent the growing cave. In the final chapter I focus on the development of a processing framework for the detection and location of microseismic events recorded on dense (or large-N) surface arrays. The proposed framework involves: (1) data reduction; (2) dividing the array into smaller sub-arrays; (3) waveform processing within fixed time windows; (4) stacking of time windows selected based on each potential origin time and source location; and (6) combining the output from all sub-arrays to infer detections and locations of sources. This methodology is validated with synthetic data built to emulate a real dataset from a 10,050 node survey to evaluate the suitability of land for carbon sequestration. Based on the presence of very strong coherent contaminating sources and low rock quality, I am only able to detect sources with moment magnitude greater than -0.5. In the five hours of data processed there is no positive detections suggesting this could be a good site for carbon storage. More work is needed to improve the detection threshold and quantify risk based on event location and magnitude. In summary, my work demonstrates how the interference (via cross-correlation) and stacking of seismic waveforms can be combined in different ways to create effective solutions for problems faced by today's industries.
3

C02 quantification using seismic attributes in laboratory experiments

Keshavarz Faraj Khah, Nasser January 2007 (has links)
Sequestration has been suggested as a solution for resolving the problem of increasing greenhouse gas emissions. CO2 is the major greenhouse gas which results from using fossil fuels for domestic and industrial purposes. Different geological targets have been suggested as reservoirs for CO2 sequestration with saline aquifers being the focus of this research. Monitoring and verification of injected CO2 into the ground is an essential part of CO2 sequestration because there is a strong requirement to understand and correctly manage the CO2 flow and movement within the reservoir over time. This includes a need to understand mobile CO2 in its all phases (gas, liquid, supercritical and dissolved in formation water). It is now well recognised that monitoring injected liquids in the sub-surface can be done remotely using surface seismic monitoring techniques. Seismic waves are sensitive to the contrast in the physical properties of formation water and CO2. As a gas, the migration path of CO2 has been shown to be easily imaged but such images provide only a qualitative rather than a quantitative solution, which is inadequate to remotely verify storage volumetrics. The complexity of saline aquifer reservoirs containing the different phases of CO2 (a function of reservoir pressure, temperature, and chemical composition and the state of phase of injected CO2) requires a good knowledge base of how the seismic response changes to such changes in CO2 phase and reservoir heterogeneities for verification purposes. / In this research, transmission ultrasonic seismic experiments were performed under controlled pressure, temperature and CO2 dissolution conditions in water. Different forms of simulated rock matrix were used to understand how seismic attributes changed with changing sequestration conditions. Data analysis showed that the commonly used approach of seismic velocity analysis is not particularly sensitive to dissolved CO2 whereas seismic amplitude was very sensitive to dissolved CO2 content and is the seismic attribute of choice for the future quantification of CO2. The density increase in formation water brine as a result of CO2 mixture was found to be directly related to transmission amplitude and provides the potential for prediction and thus, remote quantification. Also, there was confirmation during the transmission experiments that seismic amplitude changes markedly when CO2 changes phase from its dissolved form into a gas, as a result of significant attenuation by CO2 bubbles. Analysis showed that the dominant and centre frequency of the spectra also responded to CO2 phase when it changed from dissolved to its free gas form. However, these attributes appear to be of use in a qualitative manner rather than quantitative. The CO2 pre-bubble phase was studied in an attempt to obtain a basic knowledge of the effect on seismic amplitude variation for quantifying dissolved gas amounts with some success. This knowledge has an application in Gas-to-Oil-Ratio mapping in depleting oil fields and can assist the future management of production from fields which are at the stage of near-bubble point due to pressure depletion. / The results of this research have an application in time-lapse seismic monitoring and operational management of greenhouse gas sequestration operations. In particular, the VSP and cross-well seismic methods are immediate beneficiaries of this research, with further work required for application to 3-D reflectivity methods in time-lapse surface seismic monitoring.
4

Software framework for geophysical data processing, visualization and code development

Chubak, Glenn Dale 03 September 2009
IGeoS is an integrated open-source software framework for geophysical data processing under development at the UofS seismology group. Unlike other systems, this processing monitor supports structured multicomponent seismic data streams, multidimensional data traces, and employs a unique backpropagation execution logic. This results in an unusual flexibility of processing, allowing the system to handle nearly any geophysical data.<p> In this project, a modern and feature-rich Graphical User Interface (GUI) was developed for the system, allowing editing and submission of processing flows and interaction with running jobs. Multiple jobs can be executed in a distributed multi-processor networks and controlled from the same GUI. Jobs, in their turn, can also be parallelized to take advantage of parallel processing environments such as local area networks and Beowulf clusters.<p> A 3D/2D interactive display server was created and integrated with the IGeoS geophysical data processing framework. With introduction of this major component, the IGeoS system becomes conceptually complete and potentially bridges the gap between the traditional processing and interpretation software.<p> Finally, in a specialized application, network acquisition and relay components were written allowing IGeoS to be used for real-time applications. The completion of this functionality makes the processing and display capabilities of IGeoS available to multiple streams of seismic data from potentially remote sites. Seismic data can be acquired, transferred to the central server, processed, archived, and events picked and placed in database completely automatically.
5

Software framework for geophysical data processing, visualization and code development

Chubak, Glenn Dale 03 September 2009 (has links)
IGeoS is an integrated open-source software framework for geophysical data processing under development at the UofS seismology group. Unlike other systems, this processing monitor supports structured multicomponent seismic data streams, multidimensional data traces, and employs a unique backpropagation execution logic. This results in an unusual flexibility of processing, allowing the system to handle nearly any geophysical data.<p> In this project, a modern and feature-rich Graphical User Interface (GUI) was developed for the system, allowing editing and submission of processing flows and interaction with running jobs. Multiple jobs can be executed in a distributed multi-processor networks and controlled from the same GUI. Jobs, in their turn, can also be parallelized to take advantage of parallel processing environments such as local area networks and Beowulf clusters.<p> A 3D/2D interactive display server was created and integrated with the IGeoS geophysical data processing framework. With introduction of this major component, the IGeoS system becomes conceptually complete and potentially bridges the gap between the traditional processing and interpretation software.<p> Finally, in a specialized application, network acquisition and relay components were written allowing IGeoS to be used for real-time applications. The completion of this functionality makes the processing and display capabilities of IGeoS available to multiple streams of seismic data from potentially remote sites. Seismic data can be acquired, transferred to the central server, processed, archived, and events picked and placed in database completely automatically.
6

Enhanced Detection of Seismic Time-Lapse Changes with 4D Joint Seismic Inversion and Segmentation

Romero, Juan Daniel 04 1900 (has links)
Seismic inversion is the leading method to map and quantify changes in time-lapse (4D) seismic datasets, with applications ranging from monitoring hydrocarbon-producing fields to geological CO2 storage. However, the process of inverting seismic data for reservoir properties is a notoriously ill-posed inverse problem due to the band-limited and noisy nature of seismic data. This comes with additional challenges for 4D applications, given the inaccuracies in the repeatability of time-lapse acquisition surveys. Consequently, adding prior information to the inversion process in the form of properly crafted regularization terms is essential to obtain geologically meaningful subsurface models and 4D effects. In this thesis, I propose a joint inversion-segmentation algorithm for 4D seismic inversion, which integrates total variation and segmentation priors as a way to counteract the missing frequencies and noise present in 4D seismic data. I validate the algorithm with synthetic and field seismic datasets and benchmark it against state-of-the-art 4D inversion techniques. The proposed algorithm shows three main advantages: 1. it produces high-resolution baseline and monitor acoustic impedance models, 2. by leveraging similarities between multiple seismic datasets, the proposed algorithm mitigates the non-repeatable noise and better highlights the real seismic time-lapse changes, and 3. it simultaneously provides a volumetric classification of the acoustic impedance 4D difference model based on user-defined classes, i.e., percentages of seismic time-lapse changes. Such advantages may enable more robust stratigraphic/structural and quantitative 4D seismic interpretation and provide more accurate inputs for dynamic reservoir simulations.
7

Analysis of Seismic Signatures Generated from Controlled Methane and Coal Dust Explosions in an Underground Mine

Murphy, Michael M. 10 December 2008 (has links)
Examination of seismic records during the time interval of the Sago Mine disaster in 2006 revealed a small amplitude signal possibly associated with an event in the mine. Although the epicenter of the signature was located in the vicinity where the explosion occurred, it could not be unequivocally attributed to the explosion. More needs to be understood about the seismicity from mine explosions in order to properly interpret critical seismic information. A seismic monitoring system located at NIOSH's Lake Lynn Experimental Mine has monitored nineteen experimental methane and dust based explosions. The objective of the study was to analyze seismic signatures generated by the methane and dust explosions to begin understanding their characteristics at different distances away from the source. The seismic signatures from these different events were analyzed using standard waveform analysis procedures in order to estimate the moment magnitude and radiated seismic energy. The procedures used to analyze the data were conducted using self-produced programs not available with existing commercial software. The signatures of the explosions were found to be extremely complex due a combination of mine geometry and experimental design, both of which could not be controlled for the purposes of the study. Geophones located approximately 600 m (1970 ft) and over from the source collected limited data because of the attenuation of the seismic waves generated by the methane explosion. A combination of the methods used to characterize the seismic signatures allowed for differentiation between experimental designs and the size of the explosion. The factors having the largest impact on the signatures were the mine geometry, size of the methane explosion, construction of the mine seal and location of the mine seal. A relationship was derived to correlate the radiated seismic energy to the size of the explosion. Recommendations were made, based upon the limitations of this study, on methods for better collection of seismic data in the future. / Ph. D.
8

Ecoute sismique des glissements de terrain dans les roches argilo-marneuses : détection et identification des sources intervenant dans la progression des glissements / Seismic monitoring of landslides in clay-shale : source detection and identification during landslide evolution

Tonnellier, Alice 10 December 2012 (has links)
Nous souhaitons connaître les processus qui contrôlent les glissements de terrain lents à l’aide de méthodes sismiques passives. Nous installons des dispositifs d’écoute sismique sur les sites de Super-Sauze (France) et de Valoria (Italie). Nous détectons, localisons et caractérisons trois types principaux de signaux sismiques. Un type est associé aux séismes régionaux donc externe à la dynamique des glissements. Les deux autres sont localisés dans des foyers de fissures ou des ruptures de pente. Nous suggérons que le premier type est associé à des écroulements depuis l’escarpement et à du transport en surface, tandis que le second type est associé à des fractures et des cisaillements. On montre qu’il existe des corrélations entre ces signaux, les déplacements en surface et les précipitations. Les glissements de terrain sont des volumes variables dans le temps et dans l’espace, ce qui impose une maintenance régulière des équipements et complexifie l’acquisition de données permanentes. / We aim at improving our knowledge regarding slow-moving landslide evolution processes by means of passive seismic methods. Seismic arrays have been installed on two landslides (Super-Sauze, France and Valoria, Italy). We detect, locate and characterise three main types of seismic signals. One type corresponds to the regional earthquakes and is also external to the dynamics of the landslides. The two others are located into clusters close to fractured or scarp zones. The first type is interpreted as rock falls or brittle material propagating along the slide, while the second type is interpreted as fracture or shearing phenomena. We evaluate that displacements and precipitations might be correlated with seismic signals variations. Landslides are likely to move and to mechanically change in space and time, which implies a continuous monitoring of the seismic equipment and prevents from long-term acquisition.
9

3D Time-lapse Analysis of Seismic Reflection Data to Characterize the Reservoir at the Ketzin CO2 Storage Pilot Site

Huang, Fei January 2016 (has links)
3D time-lapse seismics, also known as 4D seismics, have great potential for monitoring the migration of CO2 at underground storage sites. This thesis focuses on time-lapse analysis of 3D seismic reflection data acquired at the Ketzin CO2 geological storage site in order to improve understanding of the reservoir and how CO2 migrates within it. Four 3D seismic surveys have been acquired to date at the site, one baseline survey in 2005 prior to injection, two repeat surveys in 2009 and 2012 during the injection period, and one post-injection survey in 2015. To accurately simulate time-lapse seismic signatures in the subsurface, detailed 3D seismic property models for the baseline and repeat surveys were constructed by integrating borehole data and the 3D seismic data. Pseudo-boreholes between and beyond well control were built. A zero-offset convolution seismic modeling approach was used to generate synthetic time-lapse seismograms. This allowed simulations to be performed quickly and limited the introduction of artifacts in the seismic responses. Conventional seismic data have two limitations, uncertainty in detecting the CO2 plume in the reservoir and limited temporal resolution. In order to overcome these limitations, complex spectral decomposition was applied to the 3D time-lapse seismic data. Monochromatic wavelet phase and reflectivity amplitude components were decomposed from the 3D time-lapse seismic data. Wavelet phase anomalies associated with the CO2 plume were observed in the time-lapse data and verified by a series of seismic modeling studies. Tuning frequencies were determined from the balanced amplitude spectra in an attempt to discriminate between pressure effects and CO2 saturation. Quantitative assessment of the reservoir thickness and CO2 mass were performed. Time-lapse analysis on the post-injection survey was carried out and the results showed a consistent tendency with the previous repeat surveys in the CO2 migration, but with a decrease in the size of the amplitude anomaly. No systematic anomalies above the caprock were detected. Analysis of the signal to noise ratio and seismic simulations using the detailed 3D property models were performed to explain the observations. Estimation of the CO2 mass and uncertainties in it were investigated using two different approaches based on different velocity-saturation models.
10

Shear-slip induced seismic activity in underground mines : a case study in Western Australia

Reimnitz, Marc January 2004 (has links)
Mining induced seismic activity and rockbursting are critical concerns for many underground operations. Seismic activity may arise from the crushing of highly stressed volumes of rock around mine openings or from shear motion on planes of weakness. Shear-slip on major planes of weakness such as faults, shear zones and weak contacts has long been recognized as a dominant mode of failure in underground mines. In certain circumstances, it can generate large seismic events and induce substantial damage to mine openings. The Big Bell Gold mine began experiencing major seismic activity and resultant damage in 1999. Several seismic events were recorded around the second graphitic shear between April 2000 and February 2002. It is likely that the seismic activity occurred as a result of the low strength of the shear structure combined with the high level of mining induced stresses. The stability of the second graphitic shear was examined in order to gain a better understanding of the causes and mechanisms of the seismic activity recorded in the vicinity of the shear structure as mining advanced. The data were derived from the observation of the structure exposures, numerical modelling and seismic monitoring. The numerical modelling predictions and the interpreted seismic monitoring data were subsequently compared in order to identify potential relationships between the two. This thesis proposes the Incremental Work Density (IWD) as a measure to evaluate the relative likelihood of shear-slip induced seismic activity upon major planes of weakness. IWD is readily evaluated using numerical modelling and is calculated as the product of the average driving shear stress and change in inelastic shear deformation during a given mining increment or step. IWD is expected to correlate with shear-slip induced seismic activity in both space and time. In this thesis, IWD was applied to the case study of the second graphitic shear at the Big Bell mine. Exposures of the second graphitic shear yielded information about the physical characteristics of the structure and location within the mine. Numerical modelling was used to examine the influence of mining induced stresses on the overall behaviour of the shear structure. A multi-step model of the mine was created using the three- dimensional boundary element code of Map3D. The shear structure was physically incorporated into the model in order to simulate inelastic shear deformation. An elasto-plastic Mohr-Coulomb material model was used to describe the structure behaviour. The structure plane was divided into several elements in order to allow for the comparison of the numerical modelling predictions and the interpreted seismic data. Stress components, deformation components and IWD values were calculated for each element of the shear structure and each mining step. The seismic activity recorded in the vicinity of the second graphitic shear was back analysed. The seismic data were also gridded and smoothed. Gridding and smoothing of individual seismic moment and seismic energy values resulted in the definition of indicators of seismic activity for each element and mining step. The numerical model predicted inelastic shear deformation upon the second graphitic shear as mining advanced. The distribution of modelled IWD suggested that shear deformation was most likely seismic upon a zone below the stopes and most likely aseismic upon the upper zone of the shear structure. The distribution of seismic activity recorded in the vicinity of the shear structure verified the above predictions. The seismic events predominantly clustered upon the zone below the stopes. The results indicated that the seismic activity recorded in the vicinity of the second graphitic shear was most likely related to both the change in inelastic shear deformation and the level of driving shear stress during mechanical shearing. Time distribution of the seismic events also indicated that shear deformation and accompanying seismic activity were strongly influenced by mining and were time-dependant. Seismic activity in the vicinity of the second graphitic shear occurred as a result of the overall inelastic shear deformation of the shear structure under mining induced stresses. A satisfactory relationship was found between the spatial distribution of modelled IWD upon the shear structure and the spatial distribution of interpreted seismic activity (measured as either smoothed seismic moment or smoothed seismic energy). Seismic activity predominantly clustered around a zone of higher IWD upon the second graphitic shear as mining advanced. However, no significant statistical relationship was found between the modelled IWD and the interpreted seismic activity. The lack of statistical relationship between the modelled and seismic data may be attributed to several factors including the limitations of the techniques employed (e.g. Map3D modelling, seismic monitoring) and the complexity of the process involved.

Page generated in 0.1195 seconds