• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 45
  • 27
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 255
  • 255
  • 43
  • 41
  • 40
  • 37
  • 35
  • 33
  • 33
  • 31
  • 31
  • 30
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Radiation distribution in a private neurological theatre during invasive back pain management procedures

Van der Merwe, Belinda January 2008 (has links)
Thesis (M. Tech.) -- Central University of Technology, Free State, 2008 / The aim of the study was to determine radiation dose levels around the theatre table, on either side of the C-Arm, in order to establish if the radiation dose received by staff during back pain procedures fell within the limits set by the International Commission of Radiological Protection (ICRP). The question that arose from this goal was whether the stance of staff, in relation to the x-ray tube side of the C-Arm, influenced radiation dose levels. In order to apply the ALARA principle, the possibility of lowering the radiation dose in the neurological theatre was explored. The measurement methodology of the study was twofold: measurements were executed by means of TLD meters, as well as with an ionisation chamber. TLD meters were placed on the patient, the neurosurgeon and the radiographer during back pain procedures, and, more specifically, during fluoroscopy, to record the doses with the Image Intensifier (II) above the table as well as with the x-ray tube above the table, at the pelvis and the chest height of the staff. Ionisation chamber measurements were recorded in 25cm intervals around the theatre table with a phantom and the C-Arm positioned in the PA, oblique and lateral positions at 110cm and 133cm heights from the floor. The TLD results indicated that, when compared to the Image Intensifier side, the radiation dose was higher on the x-ray tube side of the C-Arm. The radiation dose was higher at the height closest to the x-ray source. The radiation dose received by the patient was higher with the x-ray tube positioned above the table (PA). The radiation dose to the surgeon’s hand and body was higher with the x-ray tube positioned above the table (PA). Radiation dose levels with the x-ray tube above the table during back pain procedures in the current theatre exceeded the occupational annual recommendation of 500mSv to the neurosurgeons hands, as recommended by the ICRP. The opposite is true with the II positioned above the table. The research question was answered positively in that the x-ray tube under couch orientation has the potential to limit dose levels during back pain procedures. The measurement values resulted in a proposed protocol in terms of positioning of staff and orientation of the C-Arm in order to apply the ALARA principle during back pain procedures. Constant revision of protocols is the responsibility of the radiographer in order to guarantee that the ALARA principle is implemented in every unique situation.
132

Radiation dose due to indoor radon and its progeny in Hong Kong and a study of mitigation methods to control indoor radon exposure

Ho, Chi-wai, 何志偉 January 1998 (has links)
published_or_final_version / Radioisotope / Doctoral / Doctor of Philosophy
133

Radiation Dosimetry of Irregularly Shaped Objects

Griffin, Jonathan Alexander January 2006 (has links)
Electron beam therapy planning and custom electron bolus design were identified as areas in which improvements in equipment and techniques could lead to significant improvements in treatment delivery and patient outcomes. The electron pencil beam algorithms used in conventional Treatment Planning Systems do not accurately model the dose distribution in irregularly shaped objects, near oblique surfaces or in inhomogeneous media. For this reason, at Christchurch Oncology Centre the TPS is not relied on for planning electron beam treatments. This project is an initial study of ways to improve the design of custom electron bolus, the planning of electron beam therapy, and other radiation therapy simulation tasks, by developing a system for the accurate assessment of dose distributions under irregular contours in clinically relevant situations. A shaped water phantom system and a diode array have been developed and tested. The design and construction of this water phantom dosimetry system are described, and its capabilities and limitations discussed. An EGS/BEAM Monte Carlo simulation system has been installed, and models of the Christchurch Oncology Centre linacs in 6MeV and 9MeV electron beam modes have been built and commissioned. A test was run comparing the EGS/BEAM Monte Carlo system and the CMS Xio conventional treatment planning system with the experimental measurement technique using the water phantom and the diode array. This test was successful as a proof of the concept of the experimental technique. At the conclusion of this project, the main limitation of the diode array system was the lack of data processing software. The array produces a large volume of raw data, but not enough processed data was produced during this project to match the spatial resolution of the computer models. An automated data processing system will be needed for clinical use of the array. It has been confirmed that Monte Carlo and pencil-beam algorithms predict significantly different dose distributions for an irregularly shaped object irradiated with megavoltage electron beams. The results from the diode array were consistent with the theoretical models. This project was an initial investigation. At the time of writing, the diode array and the water phantom systems were still at an early stage of development. The work reported here was performed to build, test and commission the equipment. Additional work will be needed to produce an instrument for clinical use. Research into electron beam therapy could be continued, or the equipment used to expand research into new areas.
134

Radiation Dose to the Lens of the Eye from Computed Tomography Scans of the Head

Januzis, Natalie Ann January 2016 (has links)
<p>While it is well known that exposure to radiation can result in cataract formation, questions still remain about the presence of a dose threshold in radiation cataractogenesis. Since the exposure history from diagnostic CT exams is well documented in a patient’s medical record, the population of patients chronically exposed to radiation from head CT exams may be an interesting area to explore for further research in this area. However, there are some challenges in estimating lens dose from head CT exams. An accurate lens dosimetry model would have to account for differences in imaging protocols, differences in head size, and the use of any dose reduction methods.</p><p>The overall objective of this dissertation was to develop a comprehensive method to estimate radiation dose to the lens of the eye for patients receiving CT scans of the head. This research is comprised of a physics component, in which a lens dosimetry model was derived for head CT, and a clinical component, which involved the application of that dosimetry model to patient data. </p><p>The physics component includes experiments related to the physical measurement of the radiation dose to the lens by various types of dosimeters placed within anthropomorphic phantoms. These dosimeters include high-sensitivity MOSFETs, TLDs, and radiochromic film. The six anthropomorphic phantoms used in these experiments range in age from newborn to adult.</p><p>First, the lens dose from five clinically relevant head CT protocols was measured in the anthropomorphic phantoms with MOSFET dosimeters on two state-of-the-art CT scanners. The volume CT dose index (CTDIvol), which is a standard CT output index, was compared to the measured lens doses. Phantom age-specific CTDIvol-to-lens dose conversion factors were derived using linear regression analysis. Since head size can vary among individuals of the same age, a method was derived to estimate the CTDIvol-to-lens dose conversion factor using the effective head diameter. These conversion factors were derived for each scanner individually, but also were derived with the combined data from the two scanners as a means to investigate the feasibility of a scanner-independent method. Using the scanner-independent method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter, most of the fitted lens dose values fell within 10-15% of the measured values from the phantom study, suggesting that this is a fairly accurate method of estimating lens dose from the CTDIvol with knowledge of the patient’s head size.</p><p>Second, the dose reduction potential of organ-based tube current modulation (OB-TCM) and its effect on the CTDIvol-to-lens dose estimation method was investigated. The lens dose was measured with MOSFET dosimeters placed within the same six anthropomorphic phantoms. The phantoms were scanned with the five clinical head CT protocols with OB-TCM enabled on the one scanner model at our institution equipped with this software. The average decrease in lens dose with OB-TCM ranged from 13.5 to 26.0%. Using the size-specific method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter for protocols with OB-TCM, the majority of the fitted lens dose values fell within 15-18% of the measured values from the phantom study.</p><p>Third, the effect of gantry angulation on lens dose was investigated by measuring the lens dose with TLDs placed within the six anthropomorphic phantoms. The 2-dimensional spatial distribution of dose within the areas of the phantoms containing the orbit was measured with radiochromic film. A method was derived to determine the CTDIvol-to-lens dose conversion factor based upon distance from the primary beam scan range to the lens. The average dose to the lens region decreased substantially for almost all the phantoms (ranging from 67 to 92%) when the orbit was exposed to scattered radiation compared to the primary beam. The effectiveness of this method to reduce lens dose is highly dependent upon the shape and size of the head, which influences whether or not the angled scan range coverage can include the entire brain volume and still avoid the orbit.</p><p>The clinical component of this dissertation involved performing retrospective patient studies in the pediatric and adult populations, and reconstructing the lens doses from head CT examinations with the methods derived in the physics component. The cumulative lens doses in the patients selected for the retrospective study ranged from 40 to 1020 mGy in the pediatric group, and 53 to 2900 mGy in the adult group.</p><p>This dissertation represents a comprehensive approach to lens of the eye dosimetry in CT imaging of the head. The collected data and derived formulas can be used in future studies on radiation-induced cataracts from repeated CT imaging of the head. Additionally, it can be used in the areas of personalized patient dose management, and protocol optimization and clinician training.</p> / Dissertation
135

Evaluation of surface dose outside the treatment area for breast cancer irradiation modalities using thermoluminescence dosimeters (TLDs)

Unknown Date (has links)
The purpose of this research is to compare the surface dose outside the treatment area for different breast cancer irradiation modalities using Thermoluminescence Dosimeters (TLDs). Five different modalities are included in this study: Accuboost, Photon boost, Electron boost, Strut-Adjusted Volume Implant (SAVI), and Mammosite Multi-lumen (ML).Six points of interest (POI) on the breast cancer patients had been selected for the TLDs placement. Data from 25 breast cancer patients at Lynn Cancer Institute of the Boca Raton Regional Hospital were included in the study. The measured percentage ranges of the averaged doses at the six POIs for the different modalities are: Sternum 0.26% - 3.26%, Shoulder 0.33% - 2.79%, Eye 0.26% - 1.32%, Thyroid 0.20% - 2.75%, CLB 0.2% - 5.46%, Lower Abdomen 0.16% - 2.25%. / Suraj Prasad Khanal. / Thesis (M.S.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
136

Dosimetric Consequences of the Parotid Glands Using CT-To-CBCT Deformable Registration During IMRT For Late Stage Head And Neck Cancers

Unknown Date (has links)
Patients receiving Intensity Modulated Radiation Therapy (IMRT) for late stage head and neck (HN) cancer often experience anatomical changes due to weight loss, tumor regression, and positional changes of normal anatomy (1). As a result, the actual dose delivered may vary from the original treatment plan. The purpose of this study was (a) to evaluate the dosimetric consequences of the parotid glands during the course of treatment, and (b) to determine if there would be an optimal timeframe for replanning. Nineteen locally advanced HN cancer patients underwent definitive IMRT. Each patient received an initial computerized tomography simulation (CT-SIM) scan and weekly cone beam computerized tomography (CBCT) scans. A Deformable Image Registration (DIR) was performed between the CT-SIM and CBCT of the parotid glands and Planning Target Volumes (PTVs) using the Eclipse treatment planning system (TPS) and the Velocity deformation software. A recalculation of the dose was performed on the weekly CBCTs using the original monitor units. The parameters for evaluation of our method were: the changes in volume of the PTVs and parotid glands, the dose coverage of the PTVs, the lateral displacement in the Center of Mass (COM), the mean dose, and Normal Tissue Complication Probability (NTCP) of the parotid glands. The studies showed a reduction of the volume in the PTVs and parotids, a medial displacement in COM, and alterations of the mean dose to the parotid glands as compared to the initial plans. Differences were observed for the dose volume coverage of the PTVs and NTCP of the parotid gland values between the initial plan and our proposed method utilizing deformable registration-based dose calculations. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
137

Dosimetric and Radiobiological Comparison of Forward Tangent Intensity Modulated Radiation Therapy (FT-IMRT) and Volumetric Modulated Arc Therapy (VMAT) for Early Stage Whole Breast Cancer

Unknown Date (has links)
Intensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for various tumor sites in the body such as brain, prostate, head and neck, cervix and anal carcinoma. This is the first study to compare VMAT with IMRT for breast cancer. The results show that the RapidArc technique in Eclipse version 11 does not improve all aspects of the treatment plans for the breast cases automatically and easily, but it needs to be manipulated by extra techniques to create acceptable plans thus further research is needed. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
138

Implementação de uma análise computadorizada da curva de emissão termoluminescente e aplicação em dosimetria clínica / Implementation of a computerized glow curve analysis and application in clinical dosimetry

Ferreira, Marcela Felix Chaves 28 February 2018 (has links)
Nas décadas de 1960 e 1970, as primeiras investigações de dosímetros termoluminescentes (TLD), especificamente, os picos dosimétricos, rapidamente revelaram um número surpreendente de fenômenos que poderiam estar diretamente relacionados à densidade de ionização. Um pouco mais tarde, nos anos 80 e no início dos anos 90, a radiação aparentemente desconectada induziu fenômenos que foram descobertos em outros sistemas baseados em fluoreto de lítio (LiF). A última década, no entanto, testemunhou o surgimento de vários modelos, encabeçado através de uma compreensão mais profunda dos mecanismos TL subjacentes, bem como na modelagem micro dosimétrica e especificamente desenvolvida para explicar fenômenos de densidade de ionização. Muitas aplicações em radioterapia fornecem níveis de dose de radiação superiores a 1 Gy, porém em radiodiagnóstico estão na faixa de alguns mGy, e níveis muito altos de precisão são necessárias para promover o tratamento ideal. Isto exige uma atenção muito cuidadosa aos protocolos de medição altamente detalhados, bem como à calibração demorada de todos os TLDs para corrigir a não-linearidade da resposta à dose. Essas propriedades podem variar de lote para lote e também podem ser uma função da exposição à radiação, do aquecimento e histórico de manuseio. Deste modo, mesmo com excelentes avanços nos estudos do TLD com relação aos tratamentos térmicos e às formas de análise da curva de emissão TL, é necessário continuar os estudos a fim de possibilitar uma melhor utilização desta técnica na clínica. Uma análise computadorizada da curva de emissão (CGCA do inglês, computadorized glow curve analisys) foi implementada utilizando dados provenientes do software WinREMS de dosímetros TL que absorvem e armazenam a energia da radiação ionizante, reemitida na forma de fóton na região do ultravioleta visível. A luz emitida é, então, detectada por uma fotomultiplicadora e correlacionada à dose absorvida recebida pelo material. Os picos de emissão foram ajustados por meio de um algoritmo no programa MATLAB adotando-se o modelo de cinética de primeira ordem. O material testado foi o LiF:Mg,Ti (fluoreto de lítio dopado com magnésio e titânio) da marca Harshaw e a qualidade do ajuste foi determinada por um parâmetro chamado figura de mérito (FOM - do inglês, figure of merit). O menor FOM obtido para o grupo de dosímetros foi de 1,04 % e o maior foi de 9,79 %. Também foi avaliada a dose mínima detectável, utilizando o parâmetro que apresentou melhor desempenho, segundo a homogeneidade do grupo de dosímetros. O valor médio de dose mínima apresentado foi 28 µGy. Os resultados de reprodutibilidade, índice de variabilidade do detector (DVI - do inglês, device variability index) foi 14,01 %, que pode ser explicado pelo alto número de dosímetros no lote. Então, com a diminuição do tempo de preparo do dosímetro e com a análise computadorizada da curva de emissão, a utilização clínica do TLD torna-se mais viável, visto que não houve interferência na sensibilidade do dosímetro. Apesar de a reprodutibilidade ter sido a cima do esperado, é indicado uma correção individual para cada dosímetro e o descarte daqueles que apresentarem valores mais discrepantes comparado ao lote. / In the decades of 1960 and 1970, the first investigations of termoluminescentes dosimeters (TLD), specifically, the dosimetric peaks quickly revealed a surprising number of phenomena that could be directly related to the density of ionization. A little later, in the years 80 and 90 at the beginning of the year, seemingly disconnected radiation induced phenomena were discovered on other systems based on lithium fluoride (LiF). The last decade, however, has witnessed the emergence of several models, spearheaded through a deeper understanding of the underlying TL mechanisms as well as in modeling specifically developed for microdosimetric and explain phenomena of ionization density. Many applications in radiation oncology provide levels of radiation dose in excess of 1 Gy, however in diagnostic radiology are in the range of a few mGy, and very high levels of precision are necessary to promote the ideal treatment. This requires careful attention to the highly detailed measurement protocols, as well as the time-consuming calibration of all TLDs to correct the non-linearity of dose-response. These properties can vary from batch to batch, and can also be a function of exposure to radiation, heating and handling history. In this way, even with excellent advances in the studies of the TLD for the heat treatment and the ways of issuing TL curve analysis, it is necessary to continue studies in order to enable a better use of this technique in the clinic. A computerized analysis of the emission curve (CGCA computadorized glow curve analysis) was implemented using data from the WinREMS software of TL dosimeters that absorb and store energy from ionizing radiation, reissued in the form of photon in the visible ultraviolet. The light emitted is then detected by a photomultiplier and correlated to the absorbed dose received by the material. The emission peaks were adjusted by means of an algorithm in MATLAB program by adopting the model of first-order kinetics. The material tested was the LiF: Mg, Ti (lithium fluoride doped with magnesium and titanium) brand Harshaw and the quality of the fit was determined by a parameter called figure of merit (FOM- figure of merit). The smallest FOM obtained for the group of dosimeters was 1.04% and the highest was 9.79%. Also minimum detectable dose was evaluated, using the parameter that showed better performance, according to the homogeneity of the Group of dosimeters. The average value of minimum dose presented was 28 µGy. The results of reproducibility, index of variability of the detector (DVI-English, device variability index) was 14.01%, which can be explained by the high number of dosimeters in the batch. Then, with the decrease in the time of preparation of the dosimeter and the computerized analysis of the emission curve, the clinical use of the TLD becomes more viable, since there was no interference on sensitivity of the dosimeter. Although the reproducibility have been above expectations, indicated a single correction for each badge and the disposal of those who submit more discrepant values compared to the batch.
139

Development of adaptive dose constraints templates for dose optimization in intensity-modulated radiation therapy (IMRT) treatment planning advanced-stage nasopharyngeal cancer. / CUHK electronic theses & dissertations collection

January 2007 (has links)
Advanced-stage nasopharyngeal carcinoma (NPC) presents very difficult scenarios for radiation therapy (RT) planning. The infiltration of tumor to the skull base and beyond means that the tumor is very close to critical normal organs (organs at risk, OARs). Despite the advent of intensity-modulated radiotherapy (IMRT) treatment technique---the state-of-art RT technique, conflicting requirements between organ protection and target dose conformity is still problematic. The objectives of the present research are (1) to investigate the dosimetry properties of IMRT treatment in advanced-stage NPC in respect of its dosimetric limitations and planning problems, (2) to develop new methods and tools to resolve such problems, in particular to improve the quality of treatment plans and efficiency of the dose planning and optimization process. A series of four inter-linked studies were conducted to address these issues. / In conclusion, the solutions to several major problems in IMRT planning for advanced-stage NPC were investigated and established. It has been demonstrated in this research that, by applying these methods and tools, significant improvement in the dosimetry and efficiency of IMRT treatment planning can be accomplished as compared with conventional IMRT planning techniques. It is expected that such would translate into an improvement in treatment throughput, better tumor control and reduction in normal tissues complications. The methods developed have potential to be applied to all stages of NPC and to other tumor sites. / The first study was to improve the efficacy in target coverage and organs sparing using an "organ-splitting" approach. The OARs which overlapped with targets were split into target-overlapping and non-overlapping segments and each segment was assigned with different constraints parameters to increase the degree of flexibility during optimization. As a result, a steep gradient in the dose distribution at the regions of interface between the targets and normal critical organs could be achieved and treatment quality was improved. In the second study, a thorough dosimetric comparison between conventional 2-dimensional (2D) RT and IMRT plans was conducted to determine, with reference to outcome of 2D treatments, the extended tolerance dose limits for the critical organs, especially that of the brainstem and spinal cord, and their planning organ at risk volume. Such data could then serve as reference in IMRT planning when the dose of critical organs need be exceeded in order to allow adequate dose to a very close by target. In the third study, the feasibility of using interpolated contours for segmentation of targets and OARs in IMRT planning was investigated. The result indicated that the use of interpolated contours in IMRT planning could significantly reduce the contouring time by about 50% without degrading the target coverage and OARS sparing. In the final study, an array of dose constraint templates that could accommodate different degrees of overlap between the targets and OARs, together with a template selection program, were developed to improve the efficiency of IMRT planning. By applying the methods and tools developed, IMRT treatment planning of advanced NPC could become more efficient and less dependent on planner's experience. / Chau, Ming Chun. / Adviser: Anthony Chan Tak Cheung. / Source: Dissertation Abstracts International, Volume: 69-02, Section: B, page: 0948. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 118-128). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / School code: 1307.
140

Evaluation of the radiation detection properties of synthetic diamonds for medical applications

Ade, Nicholas 06 May 2015 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2015.

Page generated in 0.0952 seconds