• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the use of protein-targeted pegylated gold nanoparticle probes in the surface-enhanced Raman spectroscopy of cells

Shaw, Conor 02 January 2015 (has links)
Currently, it is very challenging to accurately monitor the response of patients to radiation therapy over the course of treatment. The initial response to ionizing radiation occurs in the cells at a molecular level, and effects of the response are not typically noticeable on short time scales. Surface-enhanced Raman Spectroscopy, or SERS, has proven to be a useful technique in the analysis of tissues and cells at a molecular level. Specifically, the use of targeted SERS probes allows for the detection of specific proteins on the cell membrane. The work presented here looks to assess the feasibility of using targeted SERS probes and two-dimensional SERS microscopy to measure the response of tumour cells to ionizing radiation, by identifying changes in the distribution of membrane proteins following exposure to clinically relevant doses of ionizing radiation (≤ 60Gy). Two different types of targeted SERS probes were investigated, based on the work of Grubisha et al. ([1]; Type I) and Qian et al. ([2]; Type II), both containing a gold nanoparticle core. In a simplified cellular experiment, biotin on the surface of biotinylated OVCAR5 cells was targeted with streptavidin-SERS probes, and the Type-II SERS probes showed the most promising results. However, SERS maps still provided less characteristic spectral signal than expected, and challenges remain in the development of a reproducible cellular imaging technique. Despite difficulties in cellular imaging, the functionality of the Type-II SERS probes was verified separately, using gold slides with a biotin monolayer in place of cells. Following verification, the SERS intensities provided by differently sized clusters of the SERS probes were characterized. To begin, both SERS maps and scanning electron microscope (SEM) images of gold slides were acquired after incubation with Type-II SERS probes for multiple times (1hr, 2hr, 3hr, 12hr). Data analysis of the SEM images provided a measure of the physical distribution of the SERS probes on the surface of the slide, while analysis of the SERS maps provided information about the spectral distribution of the probes. By relating the information provided by the SEM images and SERS maps, a simple polynomial relationship between SERS intensity and the number of clustered SERS probes providing the enhancement was determined, providing a framework for quantifiable SERS imaging. Finally, an independent experiment was devised to ensure that exposure to clinically relevant doses of ionizing radiation would affect the ability of the targeted protein to bind to SERS probes, thus leading to measurable differences in SERS maps of irradiated and unirradiated cells. A series of experiments utilizing the enzyme-linked immunosorbant assay (ELISA) was performed to test the effect of ionizing radiation-induced damage on the ability of streptavidin to bind to biotin, and the results confirmed that a noticeable reduction in binding could be detected at doses as low as 10 Gy. The results of this work demonstrate that following the development of a suitable cell/SERS probe incubation technique, Type-II SERS probes would be appropriate for use in quantifiable SERS imaging. Also, it is suggested that a measurable change in protein function will be present when comparing SERS maps of control cells to those of cells irradiated to clinically relevant doses. / Graduate
2

MICROSTRUCTURAL EVOLUTION IN ZR AND ZR ALLOY EXCEL UNDER ION IRRADIATION

Idrees, YASIR 03 January 2014 (has links)
Zirconium and its alloys have been used extensively in both light and heavy water reactors where neutron irradiation is known to cause microstructural evolution, leading to degradation of mechanical properties and dimensional instabilities. Dimensional instabilities due to irradiation growth are particularly crucial for Zr alloy Excel which is the proposed candidate material for the conceptual CANDU-Super Critical Water Cooled Reactors (SCWR) pressure tube. This study employs the in-situ ion irradiation technique and transmission electron microscopy to investigate the irradiation induced microstructural evolution in Zr and Zr alloy Excel. The current study is presented as a manuscript format dissertation comprised of five manuscript chapters. Chapter 3 reports the formation of irradiation induced prismatic defects directly from cascade collapse in pure Zr at low dose (0.008 dpa) in a temperature range of 300oC-500oC. The morphology and yield of these defects are found to be temperature and dose dependent. In Chapter 4, irradiating Zircaloy-2 under similar conditions to pure Zr, reveals that nucleation rate of small prismatic loops increases, whereas their growth is suppressed which indicates that these defect clusters are not only temperature dependent but also impurity dependent. Chapters 5, 6 and 7 report the irradiation induced microstructural changes at various temperatures up to a dose of 10 dpa, in several microstructures of Zr alloy Excel, achieved by different solution treatments. The major focus of these experimental studies was the formation of <c>-component loops in α-phase; decomposition of β-phase; and irradiation induced microchemical changes. It was found that nucleation and growth of <c>-component loops is strongly dependent on irradiation temperature, parent microstructure, and presence of alloying elements. <c>-component loops nucleate above a threshold incubation dose which decreases with an increase of irradiation temperature. Energy dispersive X-ray spectroscopy (EDS) mapping on irradiated microstructures revealed the formation of small Sn clusters in α-phase which have a significant effect on the morphology of <c>-component loops. Fe plays an important role in the nucleation of <c>-component loops, as it distributes itself during irradiation either from β-phase or from pre-existing secondary phase precipitates in α-phase. Furthermore irradiation induced decomposition of β-phase was observed in the form of ω-phase precipitation and irradiation induced clustering of alloying elements. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2013-12-31 23:50:30.352

Page generated in 0.0854 seconds