• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 5
  • 3
  • 1
  • Tagged with
  • 36
  • 36
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Optical Analysis of a Linear-Array Thermal Radiation Detector for Geostationary Earth Radiation Budget Applications

Sanchez, Maria Cristina 12 March 1998 (has links)
The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently working to develop a new technology for thermal radiation detectors. The Group is also studying the viability of replacing current Earth Radiation Budget radiometers with this new concept. This next-generation detector consists of a thermopile linear array thermal radiation detector. The principal objective of this research is to develop an optical model for the detector and its cavity. The model based on the Monte-Carlo ray-trace (MCRT) method, permits parametric studies to optimize the design of the detector cavity and the specification of surface optical properties. The model is realized as a FORTRAN program which permits the calculation of quantities related to the cross-talk among pixels of the detector and radiation exchange among surfaces of the cavity. An important capability of the tool is that it provides estimates of the discrete Green's function that permits partial correction for optical cross-talk among pixels of the array. / Master of Science
22

Etude et développement d’une chaine de traitement analogique du signal dédiée à la détection de particules en environnement sévère / Development of an analog processing chain dedicated to particles detection in harsh environment

Ben Krit, Sabrine 17 December 2015 (has links)
Le travail présenté dans ce mémoire est basé sur l’étude et le développement d’une chaine analogique de traitement du signal destinée à la détection de particules issues d’un réacteur nucléaire. Le détecteur de radiations relatif à cette chaine, étant placé au cœur du réacteur (hautes températures et radiations), deux scénarii d’intégration de la chaine analogique en environnement sévère ont été étudiés. Tandis que le premier scénario consiste à placer le préamplificateur et l’amplificateur de mise en forme loin du détecteur, le deuxième est basé sur l’intégration de ces blocs analogiques en environnement contraint. Bien que le premier scénario ait démontré de bonnes performances en termes de linéarité et sensibilité, l’amélioration de la résolution digitale fournie par le système nous a mené à investiguer le placement de la chaine tout près du détecteur. Plusieurs études, basées sur l’évaluation de la fiabilité de la structure vis-à-vis des contraintes de l’environnement sévère ont été donc élaborées. De plus une solution innovante permettant une meilleure caractérisation de la particule incidente a été présentée et détaillée. / The work presented in this thesis is based on the study and development of an analog processing chain dedicated to the detection of particles delivred from a nuclear reactor. The radiation detector related to this chain, being placed at the heart of the reactor (high temperatures and radiation flux), two scenraii related to the integration of the analog chain in harsh environment were studied. While the first scenario consists on placing the preamplifier and the shaping amplifier away from the detector, the second is based on the integration of these analog blocks in harsh environment. Although the first scenario has proven good performances in terms of linearity and sensitivity, the improvement of the digital resolution provided by the system leaded us to investigate the placement of the chain close to the detector. Several studies based on the evaluation of the structure reliability under harsh environment constraints were thus elaborated. In addition, an innovative solution providing better characterization of the incident particle was presented and detailed.
23

Photoluminescence characterization of cadmium zinc telluride

Alshal, Mohamed 11 July 2019 (has links)
The demand for wide bandgap semiconductors for radiation detector applications has significantly increased in recent years due to an ever-growing need for safeguard measures and medical imaging systems amongst other applications. The need for these devices to be portable and efficient, and to operate at room temperature is important for practical applications. For radiation detectors, the semiconductor materials are mainly required to have an optimal energy gap, high average atomic number, good electrical resistivity and charge transport properties as well as purity and homogeneity. Cadmium zinc telluride (CZT) distinctly stands out among the other choices of semiconductor materials for radiation detector applications, due to its attractive material properties and the room temperature operation possibility. A tremendous amount of research is being conducted to improve CZT technology and its implementation into more commercial systems. Applications of CZT detector technology in national security, high energy physics, nuclear spectroscopy, and medical imaging systems are of special interests. However, CZT devices still face challenges that need to be understood and overcome in order to have more efficient radiation detector systems. One such challenge lies in the understanding of the surfaces of CZT detectors and surface recombination effects on charge transport, charge collection efficiency, and detector performance. Another common issue is the degradation of CZT detectors due to the presence of defects which can act as traps for the charge carriers and cause incomplete charge collection from the detectors. Thus, a major challenge is that, the commercial CZT crystals have large concentrations of defects and impurities that need to be characterized, and their effects on the detector performance should be studied. Photoluminescence (PL) spectroscopy is a sensitive, non-contact and non-destructive method, suitable to characterize lower concentrations of point defects, such as substitutional impurities (donors, acceptors) and native defects in CZT crystals. A PL spectrum provides information regarding the defect nature of the crystal by determining the presence and the type of vacancies, interstitials, and impurities in the lattice. The main objective of this thesis is to address the presence of the defects in CZT crystals, identify their types, and study their roles in the performance of x-ray radiation detectors using PL spectroscopy. Additionally, using PL method and different excitation sources including UV excitation, this thesis studies the surface of CZT samples and investigates the PL signature of the surface oxide of the samples, in an effort to optimize the surface processing and thereby improve CZT detector performance. / Graduate
24

Unipolar Charge-Sensing for Evaporated Large-Area Solid-State Photoconductors for Digital Radiography

Goldan, Amirhossein 14 February 2012 (has links)
An alternative approach to energy integrating systems is photon counting which provides higher dose efficiency through efficient noise rejection and optimal energy weighting, and, moreover, is not susceptible to memory artifacts such as image lag and ghosting. The first large-area photon counting imager was Charpak's Nobel Prize winning invention of the gas-filled multiwire proportional chamber (MWPC), which revolutionized the field of radiation detection in 1968. In most applications, however, the use of a solid detection medium is preferable because solid densities are about three orders-of-magnitude greater than gas, and thus, they can yield much smaller detector dimensions with unsurpassed spatial and temporal resolution. Thus far, crystalline Cadmium Zinc Telluride is the only room-temperature solid-state detector that meets the requirements for photon counting imaging. However, the material is grown in small ingots and production costs are high for large-area imaging applications. The problem is that disordered (or non-crystalline) solids, which are easier and less expensive to develop over large-area than single crystalline solids, have been ruled out as viable photon counting detectors because of their poor temporal resolution, or more specifically, extremely low carrier mobilities and transit-time-limited photoresponse. To circumvent the problem of poor charge transport in disordered solids with a conventional planar detector structure, we propose unipolar charge sensing by establishing a strong near-field effect using an electrostatic shield within the material. We introduce the concept of time-differential photoresponse in unipolar solids and show that their temporal resolution can be improved substantially to reach the intrinsic physical limit set by spatial dispersion. Inspired by Charpak's MWPC and its variants, and for the first time, we have implemented an electrostatic shield inside evaporated amorphous selenium (a-Se) using the proposed lithography-based microstrip solid-state detector (MSSD). The fabricated devices are characterized with optical, x-ray, and gamma-ray impulse-like excitations. Using optical time-of-flight (TOF) measurements, we show for the first time a unipolar Gaussian TOF transient from the new MSSD structure, instead of a rectangular response with a Gaussian-integral at the tail which is a typical response of a conventional planar device. The measured optical and x-ray TOF results verify the time-differential property of the electrostatic shield and the practicality of the dispersion-limited photoresponse. Furthermore, we use single gamma-ray photon excitations to probe detector's temporal resolution in pulse mode for photon counting. For the MSSD, we show a depth-independent signal for photon absorption across the bulk and a reduction in signal risetime by a factor of 350, comparing performance limiting factors being hole-dispersion for the MSSD and electron-transit-time for the conventional planar device. The time-differential response obtained from the proposed unipolar detector structure enables disordered photoconductive films to become viable candidates for large-area photon counting applications.
25

Unipolar Charge-Sensing for Evaporated Large-Area Solid-State Photoconductors for Digital Radiography

Goldan, Amirhossein 14 February 2012 (has links)
An alternative approach to energy integrating systems is photon counting which provides higher dose efficiency through efficient noise rejection and optimal energy weighting, and, moreover, is not susceptible to memory artifacts such as image lag and ghosting. The first large-area photon counting imager was Charpak's Nobel Prize winning invention of the gas-filled multiwire proportional chamber (MWPC), which revolutionized the field of radiation detection in 1968. In most applications, however, the use of a solid detection medium is preferable because solid densities are about three orders-of-magnitude greater than gas, and thus, they can yield much smaller detector dimensions with unsurpassed spatial and temporal resolution. Thus far, crystalline Cadmium Zinc Telluride is the only room-temperature solid-state detector that meets the requirements for photon counting imaging. However, the material is grown in small ingots and production costs are high for large-area imaging applications. The problem is that disordered (or non-crystalline) solids, which are easier and less expensive to develop over large-area than single crystalline solids, have been ruled out as viable photon counting detectors because of their poor temporal resolution, or more specifically, extremely low carrier mobilities and transit-time-limited photoresponse. To circumvent the problem of poor charge transport in disordered solids with a conventional planar detector structure, we propose unipolar charge sensing by establishing a strong near-field effect using an electrostatic shield within the material. We introduce the concept of time-differential photoresponse in unipolar solids and show that their temporal resolution can be improved substantially to reach the intrinsic physical limit set by spatial dispersion. Inspired by Charpak's MWPC and its variants, and for the first time, we have implemented an electrostatic shield inside evaporated amorphous selenium (a-Se) using the proposed lithography-based microstrip solid-state detector (MSSD). The fabricated devices are characterized with optical, x-ray, and gamma-ray impulse-like excitations. Using optical time-of-flight (TOF) measurements, we show for the first time a unipolar Gaussian TOF transient from the new MSSD structure, instead of a rectangular response with a Gaussian-integral at the tail which is a typical response of a conventional planar device. The measured optical and x-ray TOF results verify the time-differential property of the electrostatic shield and the practicality of the dispersion-limited photoresponse. Furthermore, we use single gamma-ray photon excitations to probe detector's temporal resolution in pulse mode for photon counting. For the MSSD, we show a depth-independent signal for photon absorption across the bulk and a reduction in signal risetime by a factor of 350, comparing performance limiting factors being hole-dispersion for the MSSD and electron-transit-time for the conventional planar device. The time-differential response obtained from the proposed unipolar detector structure enables disordered photoconductive films to become viable candidates for large-area photon counting applications.
26

Fabrication and Characterization of a Molten Salt Application Silicon Carbide Alpha Detector

Jarrell, Joshua Taylor, Jarrell January 2018 (has links)
No description available.
27

An Inexpensive Alpha Spectrometer Based on a p-i-n Photodiode : Making Advanced Particle Detectors From Common Commercial Components

Arnqvist, Elias January 2022 (has links)
The purpose of this project was to design, construct, and evaluate an alpha spectrometer based on an inexpensive p-i-n photodiode as a radiation detector. The BPX-61 p-i-n photodiode was selected and calculated to have a 93 µm wide sensitive volume at 25 V reverse bias. Electronics consisting of a charge-sensitive preamplifier, a pole-zero canceling CR-(RC)4 pulse shaping amplifier, and an adjustable detector bias voltage supply were devised and assembled. Several alpha spectra were recorded from different alpha radiation sources to determine the performance of the alpha spectrometer. The results show that the alpha spectrometer could successfully and accurately measure alpha spectra, which could then be used to identify radioactive materials present in the sources. An FWHM resolution of about 230 keV was measured for 5.486 MeV alpha particles from Am-241. This resolution is inferior to most alpha spectrometers that measure under vacuum. However, because the device does not require a vacuum pump and uses USB for power and data acquisition, it is a convenient and compact option for field measurements. The low cost and reasonable performance of commercial p-i-n photodiodes as radiation detectors could be appealing for future alpha spectroscopy applications.
28

VIDRO COMERCIAL COMO DETECTOR E MEDIDOR DE RADIAÇÃO NUM IRRADIADOR DE GRANDE PORTE. / COMMERCIAL PLATE WINDOW GLASS AS DETECTOR AND RADIATION METER AT A TOTE BOX IRRADIATOR

Rodrigues Junior, Ary de Araujo 31 January 2000 (has links)
Amostras de vidro comercial para janelas de fabricação nacional foram testadas como dosímetros de rotina para doses altas em um irradiador de grande porte que utiliza uma fonte de Co-60. Estas amostras foram estudadas em termos da uniformidade do lote, repetibilidade, desvanecimento, resposta à dose absorvida entre 5 e 30 kGy, de processamentos rotineiros. A técnica da absorção óptica foi usada para medir-se as amostras de vidro. Todos os resultados obtidos mostram a viabilidade do uso de amostras de placas de vidro para janelas como um sistema dosimétrico de rotina, assim como indicador de irradiação Sim/Não para doses altas em irradiadores de grande porte que utilizam fontes de Co-60 / Commercial window glass samples were tested as routine high dose dosimeters at a Co-60 tote box irradiator. These samples were studied in terms of their batch uniformity, response repeatibility, fading and absorbed dose response from 5 until 30 kGy in typical irradiation procedures. The optical absorption technique was used to measure the glass samples. All the obtained results show the feasibility of using plate window glass samples as a routine high dose dosimetry system and as a Yes/No irradiation indicator for a Co-60 tote box irradiator.
29

VIDRO COMERCIAL COMO DETECTOR E MEDIDOR DE RADIAÇÃO NUM IRRADIADOR DE GRANDE PORTE. / COMMERCIAL PLATE WINDOW GLASS AS DETECTOR AND RADIATION METER AT A TOTE BOX IRRADIATOR

Ary de Araujo Rodrigues Junior 31 January 2000 (has links)
Amostras de vidro comercial para janelas de fabricação nacional foram testadas como dosímetros de rotina para doses altas em um irradiador de grande porte que utiliza uma fonte de Co-60. Estas amostras foram estudadas em termos da uniformidade do lote, repetibilidade, desvanecimento, resposta à dose absorvida entre 5 e 30 kGy, de processamentos rotineiros. A técnica da absorção óptica foi usada para medir-se as amostras de vidro. Todos os resultados obtidos mostram a viabilidade do uso de amostras de placas de vidro para janelas como um sistema dosimétrico de rotina, assim como indicador de irradiação Sim/Não para doses altas em irradiadores de grande porte que utilizam fontes de Co-60 / Commercial window glass samples were tested as routine high dose dosimeters at a Co-60 tote box irradiator. These samples were studied in terms of their batch uniformity, response repeatibility, fading and absorbed dose response from 5 until 30 kGy in typical irradiation procedures. The optical absorption technique was used to measure the glass samples. All the obtained results show the feasibility of using plate window glass samples as a routine high dose dosimetry system and as a Yes/No irradiation indicator for a Co-60 tote box irradiator.
30

Spectrally-matched neutron detectors designed using computational adjoint S<sub>N for plug-in replacement of Helium-3

Walker, Scottie 20 September 2013 (has links)
Neutron radiation detectors are an integral part of the Department of Homeland Security (DHS) efforts to detect the illicit trafficking of radioactive or special nuclear materials into the U.S. In the past decade, the DHS has deployed a vast network of radiation detection systems at various key positions to prevent or to minimize the risk associated with the malevolent use of these materials. The greatest portion of this detection burden has been borne by systems equipped with 3He because of its highly desirable physical and nuclear properties. However, a dramatic increase in demand and dwindling supply, combined with a lack of oversight for the existing 3He stockpile has produced a critical shortage of this gas which has virtually eliminated its viability for detector applications. A number of research efforts have been undertaken to develop suitable 3He replacements; however, these studies have been solely targeted toward simple detection cases where the overall detection efficiency is the only concern. For these cases, an insertion of additional detectors or materials can produce reaction rates that are sufficient, because the neutron spectral response is essentially irrelevant. However, in applications such as safeguards, non-proliferation efforts, and material control and accountability programs (MC&A), a failure to use detectors that are spectrally matched to 3He can potentially produce dire consequences. This is because these more difficult detection scenarios are associated with fissile material assessments for 239Pu and other actinides and these analyses have almost universally been calibrated to an equivalent 3He response. In these instances, a “simple” detector or material addition approach is neither appropriate nor possible, due to influences resulting from the complex nature of neutron scattering in moderators, cross sections, gas pressure variations, geometries, and surrounding structural interference. These more challenging detection cases require a detailed computational transport analysis be performed for each specific application. A leveraged approach using adjoint transport computations that are validated by forward transport and Monte Carlo computations and laboratory measurements can address these more complex detection cases and this methodology was utilized in the execution of the research. The initial task was to establish the fidelity of a computational approach by executing radiation transport models for existing BF3 and 3He tubes and then comparing the modeling results to laboratory measurements made using these identical devices. Both tubes were 19.6 cm in height, 1-inch in diameter, and operated at 1 and 4 atm pressure respectively. The models were processed using a combination of forward Monte Carlo and forward and adjoint 3-D discrete ordinates (SN) transport methods. The computer codes MCNP5 and PENTRAN were used for all calculations of a nickel-shielded plutonium-beryllium (PuBe) source term that provided a neutron output spectra equivalent to that of weapons-grade plutonium (WGPu). Once the computational design approach was validated, the adjoint SN method was used to iteratively identify six distinct plug-in models that matched the neutron spectral response and reaction rate of a 1-inch diameter 3He tube with a length of 10 cm and operating at 4 atm pressure. The equivalent designs consist of large singular tubes and dual tubes containing BF3 gas, 10B linings, and/or 10B-loaded polyvinyl toluene (PVT). The reaction rate for each plug-in design was also verified using forward PENTRAN and MCNP5 calculations. In addition to the equivalent designs, the adjoint method also yielded various insights into neutron detector design that can lead to additional designs using a combination of different detector materials such as BF3/10B-loaded PVT, 10B-lined tubes/10B-loaded PVT, etc.

Page generated in 0.1371 seconds