• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimating the radiation dose to emergency room personnel in an event of a radiological dispersal device explosion

Bridges, Ashby H. January 2006 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2007. / Dr. Armin J. Ansari, Committee Member ; Dr. Farzad Rahnema, Committee Member ; Dr. Rebecca Howell, Committee Member ; Dr. Nolan E. Hertel, Committee Chair.
2

Monte Carlo simulations for Homeland Security using anthropomorphic phantoms

Burns, Kimberly A. 17 March 2008 (has links)
After a radiation dispersion device (RDD) event, there may be internally and/or externally contaminated victims. After the RDD event, victims may require immediate medical assistance prior to decontamination. The dose rates to which a healthcare provider is exposed due to the internal and external contamination of the victim were computed using Monte Carlo simulations and five anthropomorphic phantoms. The dose rates to which the victim is exposed due to his/her own external contamination were also computed. For the external contamination modeling, the contamination is assumed to be distributed over the entire exterior of the victimâ s body. The geometrical models of the human body were based on the MIRD stylized phantom. The specific isotopes considered were 60Co, 137Cs, 131I, 192Ir, and 241Am. The surface contamination was generated by creating a 2-mm thick layer adjacent to the outside of the skin of the victim and uniformly sampling the emissions of the radioactive sources throughout this volume. The attending healthcare provider was assumed to be standing 20 cm from mid-torso of the victim. The organ absorbed doses in both the contaminated individual and a healthcare professional were computed. The effective dose to the victim and the attending healthcare professional were computed using the tissue weighting factors in ICRP Publication 60. For example, the dose rate to a reference male healthcare provider from the victim six hours after the inhalation of one ALI by an adipose male victim will be 0.277 mSv/hr. In addition, the air kerma was computed at different distances from the surfaces of the victim phantom and ratios were generated for the air kerma and the effective dose due to the victim from the surface contamination on the victim.
3

Evaluation of internal contamination levels after a radiological dispersal device using portal monitors

Palmer, Randahl Christelle 24 August 2010 (has links)
In the event of a radioactive dispersal device (RDD), the assessment of the internal contamination level of victims is necessary to determine if immediate medical follow-up is necessary. Thermo Scientific's TPM-903B Portal Monitor was investigated to determine if it is a suitable first cut screening tool for internal contamination assessment of victims. A portal monitor was chosen for this study because they are readily accessible, transportable, easy to assemble, and provide whole body count rates due to the detector size. The TPM-903B was modeled in Monte Carlo N-Particles Transport Code Version 5 (MCNP). This computational model was validated against the portal monitor's response to a series of measurements made with four point sources in a polymethyl methacrylate (PMMA) slab box. Using the validated MCNP5 model and models of the MIRD male and female anthropomorphic phantoms, the response of the portal monitor was simulated for the inhalation and ingestion radionuclides from an RDD. Six representative phantoms were considered: Reference Male, Reference Female, Adipose Male, Adipose Female, Post-Menopausal Adipose Female, and 10-Year-Old Child. The biokinetics via Dose and Risk Calculation Software (DCAL) was implemented using both the inhalation and ingestion pathways to determine the radionuclide concentrations in the organs of the body which were then used to determine the count rate of the portal monitor as a function of time. Dose coefficients were employed to determine the count rate of the detector associated with specific dose limits. These count rates were then compiled into procedure sheets to be used by first responders during the triaging of victims following an RDD.
4

Assessing internal contamination after a radiological dispersion device event using a 2x2-inch sodium-iodide detector

Dewji, Shaheen Azim 08 April 2009 (has links)
The detonation of a radiological dispersion device (RDD) may result in a situation where many individuals are exposed to contamination due to the inhalation of radioactive materials. Assessments of contamination may need to be performed by emergency response personnel in order to triage the potentially exposed public. The feasibility of using readily available standard 2x2-inch sodium-iodide detectors to determine the committed effective dose to a patient following the inhalation of a radionuclide has been investigated. The 2x2-NaI(Tl) detector was modeled using the Monte Carlo simulation code, MCNP-5, and was validated via a series of experimental benchmark measurements using a polymethyl methacrylate (PMMA) slab phantom. Such validation was essential in reproducing an accurate detector response. Upon verification of the detector model, six anthropomorphic phantoms, based on the MIRD-V phantoms, were modeled with nuclides distributed to simulate inhaled contamination. The nuclides assessed included Am-241, Co-60, Cs-137, I-131, and Ir-192. Detectors were placed at four positions on the phantoms: anterior right torso, posterior right torso, anterior neck, and lateral left thigh. The detected count-rate varied with respect to detector position, and the optimal detector location was determined on the body. The triage threshold for contamination was set at an action level of 250-mSv of intake. Time dependent biokinetic modeling was employed to determine the source distribution and activity in the body as a function of post-inhalation time. The detector response was determined as a function of count-rate per becquerel of activity at initial intake. This was converted to count-rate per 250-mSv intake for triage use by first responders operating the detector to facilitate triage decisions of contamination level. A set of procedure sheets for use by first responders was compiled for each of the phantoms and nuclides investigated.
5

Ethics in Technical Communication: Historical Context for the Human Radiation Experiments

Audrain, Susan Connor 08 1900 (has links)
To illustrate the intersection of ethical language and ethical frameworks within technical communication, this dissertation analyzes the history and documentation of the human radiation experiments of the 1940s through the 1970s. Research propositions included clarifying the link between medical documentation and technical communication by reviewing the literature that links the two disciplines from the ancient period to the present; establishing an appropriate historiography for the human radiation experiments by providing a context of the military, political, medical, and rhetorical milieu of the 1940s to the 1970s; closely examining and analyzing actual human radiation experiment documentation, including proposals, letters, memos, and consent forms, looking for established rhetorical constructions that indicate a document adheres to or diverts from specific ethical frameworks; and suggesting the importance of the human radiation documents for studying ethics in technical communication. Close rhetorical analysis of the documents included with this project reveals consistent patterns of metadiscourse, passive and nominal writing styles, and other rhetorical constructions, including negative language, redundancies, hedges, and intensifiers, that could lead a reader to misunderstand the writer's original ethical purpose. Ultimately this project finds that technical communicators cannot classify language itself as ethical or unethical; the language is simply the framework with which the experimenters construct their arguments and communicate their work. Technical communicators can, however, consider the ethical nature of behavior according to specific ethical frameworks and determine whether language contributes to the behavior.

Page generated in 0.0741 seconds