Spelling suggestions: "subject:"radiative btransfer"" "subject:"radiative cotransfer""
21 |
Stratospheric aerosol retrieval from OSIRIS limb scattered sunlight spectraBourassa, Adam Edward 30 April 2007 (has links)
The recent development of satellite observations of limb scattered sunlight at optical wavelengths has afforded a new opportunity to measure the vertical structure of atmospheric composition from the upper troposphere to the mesosphere, on a global scale. The determination of profiles of atmospheric composition from observed limb radiance profiles requires two elements, a forward radiative transfer model and a species specific inversion algorithm. In this work, the development of a new, fully spherical, successive orders radiative transfer model, SASKTRAN, for the analysis of limb scattered sunlight is presented. The model is incorporated into a novel relaxation algorithm that employs spectral ratios to retrieve profiles of stratospheric aerosols from limb radiance measurements collected by the Canadian OSIRIS instrument on the Odin satellite.<p>The SASKTRAN forward model results compare favorably with both OSIRIS observations as well as with other radiative transfer model calculations while remaining computationally practical for the operational inversion of large satellite data sets.<p>The spectral ratio relaxation algorithm is able to retrieve aerosol number density profiles at stratospheric altitudes from limb radiance profiles assuming the height profile of the aerosol particle size distribution is known. The equivalent aerosol extinction derived from the OSIRIS measurements at visible wavelengths agrees with coincident occultation measurements from other satellite instrumentation to within 15% when a size distribution appropriate for background aerosol conditions is used. Finally, it is demonstrated that the incorporation of simultaneous infra-red observations at 1530 nm into the inversion yields a useful proxy for the aerosol size distribution parameters.
|
22 |
Radiative interactions: I. Light scattering and emission from irregular particles. II. Time dependent radiative coupling of an atmosphere-ocean systemLi, Changhui 30 October 2006 (has links)
In the first part of this dissertation, radiative interactions with single irregular particles
are simulated. We first introduce the basic method and techniques of Finite-
Difference Time-Domain method(FDTD), which is a powerful method to numerically
solve Maxwell's equations with high accuracy. To improve the efficiency of FDTD,
we also develop a parallel FDTD code. Since FDTD can simulate light scattering
by arbitrary shape and compositions, we study several radiative interaction cases for
single particles in an external plane parallel light source: the surface roughness effects
on the scattering, electric and magnetic energy density distribution in irregular particles,
and backscattered Mueller images. We also develop an innovative and accurate
method to simulate the infinitesimal electric dipole radiation from inside a particle
with arbitrary shape and composition. Our research and results are very important
to study light scattering by irregular particles, Raman scattering and fluorescence.
In the second part of the dissertation, we study radiative interactions in an
atmosphere-ocean system. By using the so called Matrix operator method, not only
the radiance of the radiation field, but also the polarization of the radiation field
are obtained. Given the single layer information for the atmosphere, time dependent
ocean surface shapes, and the ocean with no interface, the Matrix operator method couples these three layers and provides both the radiance and polarization reaching
a certain detector in the time domain, which are essential for atmospheric science
and oceanography. Several simple cases are studied by this method to demonstrate
its accuracy and robustness. We also show the most difficulties in this method and
discuss what one need to do in future research works.
|
23 |
An experimental investigation of the thermal conductivity of thin-wall hollow ceramic spheresShapiro, Michael Jay January 1987 (has links)
No description available.
|
24 |
Extending the applicability of implicit Monte Carlo Diffusion : frequency dependence and variance reduction using the difference formulation /Cleveland, Mathew A. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 85-87). Also available on the World Wide Web.
|
25 |
Monte Carlo simulation of radiative transfer in a cylindrical mediumStockhausen, Ralph Erwin, January 1968 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1968. / Typescript. Vita. Description based on print version record. Includes bibliographical references.
|
26 |
Optimum thermal design of radiative-conductive systemsPalmquist, Ronald William, January 1900 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1970. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliography.
|
27 |
Some studies of radiative transfer in the atmosphere : a calculation of the net radiation balance in the tropical stratosphereEdwards, D. P. January 1970 (has links)
No description available.
|
28 |
Solutions of the Equations of Radiative Transfer by an Invariant Imbedding ApproachAdams, Charles N. 01 1900 (has links)
This thesis is a study of the solutions of the equations of radiative transfer by an invariant imbedding approach.
|
29 |
The Efficient Simulation of Complex Radiation SourcesMudway, Thomas January 2018 (has links)
We describe the implementation and testing of the TREVR (Tree-based REVerse Ray-tracing) radiative transfer algorithm in the ChaNGa (Charm N-body Gravity solver) code. We calculated the optimal values for the source walk opening angle and ray trace walk refinement parameter of θ = 0.5 and τ = 0.01 respectively. We then studied the effects of the merging of sources on the accuracy of the calculated flux in absorbing regions, noting a systematic negative error and an angular dependence across all optical depths. We dubbed this the “Complex Sources Problem” and provide suggestions to mitigate its effects / Thesis / Master of Science (MSc)
|
30 |
An investigation of surface shape effects on near-field radiative transferPrussing, Keith F. 07 January 2016 (has links)
It has been shown that the energy exchange between two objects can be
greatly enhanced when the separation between the objects is on the order
of the wavelength of thermal emission. The earliest theoretical and
computational work focused on simple planar and spherical geometries, or
they resorted to approximations that separated the object to outside of
the thermal wavelength \(\lambda_T = hc/(k_BT)\). Since those original
works, the study of near-field energy exchange has expanded to object
shapes that can be described by a separable coordinate system using a
spectral expansion of the dyadic Green function of the system. The
boundary element method has also been used to study arbitrary shapes in
thermal equilibrium. Application of these new expansion methods to
general shapes out of thermal equilibrium will facilitate in the
optimization of nanoscale structures.
A three step process is used to investigate the effects of object shape
on the total and directionality of the energy exchange between objects.
First, a general expression for the energy flux between the objects will
be formulated. Second, a computational method to evaluate the
expression will be implemented. Finally, the effects of varying the
surface geometry will be explored.
The computational results demonstrate that the total energy exchange
between two bodies is influenced by the surface shape of the objects
even when the surface areas are held constant. While the primary
increase over the classical blackbody energy exchange \(\sigma T^4 A\)
is primarily governed by separation of the surfaces, we show that the
view factors from classical far-field radiative transfer can be used to
predict the change in the total energy exchange from a reference
configuration at the same separation when the surface area of the two
objects is comparable. Additionally, we demonstrate that the spatial
distribution of the energy exchange can be localized into small spatial
region with a peak value increased over \SI{30}{\percent} by using two
objects with dramatically different projected areas.
|
Page generated in 0.1048 seconds