• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 58
  • 40
  • 20
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 373
  • 373
  • 68
  • 68
  • 49
  • 39
  • 38
  • 35
  • 33
  • 32
  • 32
  • 31
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

RADIATIVE TRANSFER AND PLANETARY MIGRATION IN PROTOPLANETARY DISKS

Hasegawa, Yasuhiro January 2008 (has links)
<p> Planetary migration has become one of the most important processes in planet formation since the first discovery of an exoplanet around 51Peg. A decade after the discovery, the total number of exoplanets has increased to about three hundred. Theoretical work has shown that the disk configuration in which planets are formed strongly affects the subsequent migration of planets within them. Disks evolve and their shape transits from flared to fiat. This is thought to arise because of dust settling. We take this effect into account in our models of planet migration in protoplanetary disks that are heated by the radiation of their central stars. In particular we solve the radiative transfer equation for disks by means of the Monte Carlo method, and then consider planetary migration. We focus on planets around very low mass stars (VLMSs). </p> <p> Our calculations reproduce the disk configurations of Chiang & Goldreich (1997). As dust settles, the superheated and inner layer declines toward the mid-plane. At the same time, dust settling causes the temperature of the upper layer to increase and that of the inner layer to decrease. In order to calculate the migration time accurately, we include the gravity of planets, which causes the density around them to be compressed. This results in shadowing (in front of the planet) and illumination (behind the planet) regions. We included disk evolution by taking into account the effect of dust settling. We found that dust settling itself (without planetary gravity) can reduce the migration time by a factor of 8. When we included the gravity of planets, the effect of dust settling is somewhat washed out. This is because the effect of dust settling on migration acts in a similar way to that of planetary gravity. Thus, when the migration time without dust settling is compared to the case of dust settling (including planetary gravity), dust settling can reduce the migration time by a factor of 2. </p> <p> We also found that the migration time of massive planets(> 5MEB) in such low mass disks, for both cases, is comparable to the disk life time ( rv 107 years). This suggests that planets around VLMS do not plunge into the star within a disk lifetime. This finding is consistent with the discovery of the super-Earth (rv 5.5MEB) at 2.6 AU around M dwarf (Beaulieu et al., 2006). For lower mass planets, the migration time is about two orders of magnitude longer than the disk life time. Thus, the long planetary migration around VLMS does not cause any serious time mismatch problem as in the case of classical T Tauri star system. </p> / Thesis / Master of Science (MSc)
62

Silicon wafer surface temperature measurement using light-pipe radiation thermometers in rapid thermal processing systems

Qu, Yan 28 August 2008 (has links)
Not available / text
63

Weather Influence on LiDAR Signals using the Transient Radiative Transfer and LiDAR Equations

Hedlund, Marcus January 2020 (has links)
The ongoing development of self driving cars requires accurate measuring devices and the objective of this thesis was to investigate how di↵erent weather will affect one of these devices, known as a LiDAR. A LiDAR uses pulsed laser light to measure the distance to an object. The main goal of this thesis was to solve the transient radiative transfer equation (TRTE) that describes the propagation of radiation in a scattering, absorbing and emitting media. The TRTE was solved in the frequency domain using the discrete ordinate method (DOM) and a matrix formulation. An alternative model to estimate the amplitude of the return pulse is to use the LiDAR equation which describes the attenuation of a laser pulse in a similar way as Beer-Lamberts law. The difference between the models are that the TRTE accounts for multiple scattering whereas the LiDAR equation only accounts for single scattering. This has the effect that the LiDAR equation only models the change in amplitude of the return pulse whereas the TRTE also models the broadening and shift of the pulse. Experiments were performed with a LiDAR in foggy, rainy and clear weather conditions and compared with the theoretical models. The results from the measurements showed how the amplitude of the pulse decreased in denser fog. However, no tendency to a change in pulse shift and pulse width could be seen from the measured data. Additionally, the measurements showed the effect of ambient light and temperature to the LiDAR signal and also that, even after averaging 300 waveforms, noisy data were a problem. The results from the transient radiative transfer equation showed that in a medium with large optical depth the shift and width of the pulse are highly affected. It was also shown that the amplitude of the pulse calculated with the TRTE seemed to better approximate the experimental data in fog than the LiDAR equation.
64

A model radiative transfer problem

Zhang, Hongbin, 1965- January 1989 (has links)
The analytical solution to a model time-dependent continuous lethargy photon transport equation is evaluated numerically to obtain a benchmark solution using the Laplace transforms coupled with the multiple collision expansion method. The benchmark solution is then used to check the accuracy of the multigroup approximation. Excellent agreement between continuous lethargy benchmarks and multigroup approximation is obtained.
65

2D RADIATIVE TRANSFER IN ASTROPHYSICAL DUSTY ENVIRONMENTS

Vinkovic, Dejan 01 January 2003 (has links)
I have developed a new general-purpose deterministic 2D radiative transfer code for astrophysical dusty environments named LELUYA (www.leluya.org). It can provide the solution to an arbitrary axially symmetric multi-grain dust distribution around an arbitrary heating source. By employing a new numerical method, the implemented algorithm automatically traces the dust density and optical depth gradients, creating the optimal unstructured triangular grid. The radiative transfer equation includes dust scattering, absorption and emission. Unique to LELUYA is also its ability to self-consistently reshape the sublimation/condensation dust cavity around the source to accommodate for the anisotropic diffuse radiation. LELUYAs capabilities are demonstrated in the study of the asymptotic giant branch (AGB) star IRC+10011. The stellar winds emanating from AGB stars are mostly spherically symmetric, but they evolve into largely asymmetric planetary nebulae during later evolutionary phases. The initiation of this symmetry breaking process is still unexplained. IRC+10011 represents a rare example of a clearly visible asymmetry in high-resolution near-infrared images of the circumstellar dusty AGB wind. LELUYA shows that this asymmetry is produced by two bipolar cones with 1/r0.5 density profile, imbedded in the standard 1/r2 dusty wind profile. The cones are still breaking though the 1/r2 wind, suggesting they are driven by bipolar jets. They are about 200 years old, thus a very recent episode in the final phase of AGB evolution before turning into a proto-planetary nebula, where the jets finally break out from the confining spherical wind. IRC+10011 provides the earliest example of this symmetry breaking thus far.
66

DECIPHERING THE ARRANGEMENT OF DUST IN THE CLUMPY TORI OF ACTIVE GALACTIC NUCLEI

Thompson, Grant David 01 January 2012 (has links)
In the framework of active galactic nuclei (AGNs), a galaxy’s supermassive black hole is surrounded by a dusty torus whose clumpy configuration allows for either direct or obscured views toward the central engine. Viewing AGNs from different angles gives rise to a variety of AGN classifications; for example, the generic Type 1 AGN class requires the detection of optically broad emission lines, which arise from quickly moving material within the torus, whereas Type 2 AGNs lack these observations. While these viewing angles are not directly observable, synthetic torus models generated with CLUMPY provide a means to determine them along with other parameters that describe the nature and characteristics of the torus in general. Employing CLUMPY models with mid-infrared spectroscopic observations of a large sample of both Type 1 and Type 2 AGNs allows us to acquire a further understanding of the clumpy torus structure and its viewing angles.
67

Climate simulations of hot Jupiters : developing and applying an accurate radiation scheme

Amundsen, David S. January 2015 (has links)
To date more than 1500 exoplanets have been discovered. A large number of these are hot Jupiters, Jupiter-sized planets orbiting < 0.1 au from their parent stars, due to limitations in observational techniques making them easier to detect than smaller planets in wider orbits. This is also, for the same reasons, the class of exoplanets with the most observational constraints. Due to the very large interaction between these planets and their parent stars they are believed to be tidally locked, causing a large temperature contrast between the permanently hot day side and colder night side. There are still many open questions about these planets. Many are observed to have inflated radii, i.e. the observed radius is larger for a given mass than evolutionary models predict. A mechanism that can transport some of the stellar heating into the interior of the planet may be able to explain this. The presence of hazes or clouds has been inferred on some planets, but their composition and distribution remain unknown. According to chemical equilibrium models TiO and VO should be present on the day side of the hottest of these planets, but these molecules have not yet been detected. Cold traps, where these molecules condense out on the night side, have been suggested to explain this. The efficiency of the heat redistribution from the day side to the night side has been found to vary significantly between different planets; the mechanism behind this is still unknown. To begin to answer many of these questions we need models capturing the three-dimensional nature of the atmospheres of these planets. General circulation models (GCMs) do this by solving the equations of fluid dynamics for the atmosphere coupled to a radiative transfer scheme. GCMs have previously been applied to several exoplanets, but many solve simplified fluid equations (shallow water or primitive equations) or highly parametrised radiation schemes (temperature-forcing, gray or band-averaged opacities). We here present an adaptation of the Met Office Unified Model (UM), a GCM used for weather predictions and climate studies for the Earth, to hot Jupiters. The UM solves the full 3D Euler equations for the fluid, and the radiation scheme uses the two-stream approximation and correlated-k method, which are state of the art for both Earth and exoplanet GCMs. This makes it ideally suited for the study of hot Jupiters. An important part of this work is devoted to the adaptation of the radiation scheme of the UM to hot Jupiters. This includes calculation of opacities for the main absorbers in these atmospheres from state-of-the-art high temperature line lists, the calculation of k-coefficients from these opacities, and making sure all aspects of the scheme perform satisfactorily at high temperatures and pressures. We have tested approximations made in previous works such as the two-stream approximation, use of band-averaged opacities and different treatments of gaseous overlap. Uncertainties in current models, such as the lack of high temperature line broadening parameters for these atmospheres, are discussed. We couple the adapted radiation scheme to the UM dynamical core, which has been tested independently. Our first application is devoted to one of the most well-observed hot Jupiters, HD 209458b. Differences between previous modelling works and our model are discussed, and we compare results from the full coupled model with results obtained using a temperature-forcing scheme. We have also developed a tool to calculate synthetic phase curves, and emission and transmission spectra from the output of our 3D model. This enables us to directly compare our model results to observations and test the effect of various parameters and model choices on observable quantities.
68

TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERS

Parmentier, Vivien, Fortney, Jonathan J., Showman, Adam P., Morley, Caroline, Marley, Mark S. 24 August 2016 (has links)
Over a large range of equilibrium temperatures, clouds shape the transmission spectrum of hot Jupiter atmospheres, yet their composition remains unknown. Recent observations show that the Kepler light. curves of some hot Jupiters are asymmetric: for the hottest planets, the light. curve peaks before secondary eclipse, whereas for planets cooler than similar to 1900 K, it peaks after secondary eclipse. We use the thermal structure from 3D global circulation models to determine the expected cloud distribution and Kepler light. curves of hot Jupiters. We demonstrate that the change from an optical light. curve dominated by thermal emission to one dominated by scattering (reflection) naturally explains the observed trend from negative to positive offset. For the cool planets the presence of an asymmetry in the Kepler light curve is a telltale sign of the cloud composition, because each cloud species can produce an offset only over a narrow range of effective temperatures. By comparing our models and the observations, we show that the cloud composition of hot Jupiters likely varies with equilibrium temperature. We suggest that a transition occurs between silicate and manganese sulfide clouds at a temperature near 1600 K, analogous to the L/T transition on brown dwarfs. The cold trapping of cloud species below the photosphere naturally produces such a transition and predicts similar transitions for other condensates, including TiO. We predict that most hot Jupiters should have cloudy nightsides, that partial cloudiness should be common at the limb, and that the dayside hot spot should often be cloud-free.
69

Galactic archaeology with metal-poor stars

Nordlander, Thomas January 2017 (has links)
The chemical fingerprints of old, metal-poor stars can be used to unravel the events of the newborn Universe and help us understand the properties of the first stars and star clusters. The study of nearby stars to infer properties in the distant past is often referred to as Galactic archaeology. However, the chemical composition of stars cannot be observed directly, but must be inferred by means of spectroscopic modelling. Traditionally, this modelling utilises one-dimensional (1D) stellar atmospheres in hydrostatic and local thermodynamic equilibrium (LTE). Today, we know that departures from LTE (known as NLTE), and differences between 1D model atmospheres and their hydrodynamical three-dimensional (3D) counterparts, become increasingly severe at lower metallicity. The development of NLTE modelling of spectral line formation in 3D atmospheres is still in its infancy, but constitutes a remarkable step forward that has been made possible by parallelised codes and supercomputers. The central theme of this thesis is the application of NLTE analyses to metal-poor stars, to help usher the field of Galactic archaeology forward with important consequences for the nature of the first stellar generations. I present a theoretical NLTE study of aluminium, where I validate the analysis using a set of bright standard stars and provide calculated NLTE effects for a large parameter space. I perform 3D NLTE calculations for the solar spectrum to better constrain the zero-point of the cosmic abundance scale, and find excellent agreement with the meteoritic aluminium abundance. I also present NLTE analyses of metal-poor stars in the globular clusters NGC 6397 and M4. While globular cluster stars were long expected to form from a chemically homogeneous medium, star-to-star abundance variations of light elements indicate multiple epochs of star formation. Massive first-generation stars polluted the interstellar medium from which later generations formed, and I use the observed abundance variations to deduce the properties of the polluting stars. Among the heavier elements, I uncover evolutionary abundance variations that match predictions of stellar evolution models with atomic diffusion. The results indicate that the chemical abundance ratios of unevolved metal-poor stars are affected by gravitational settling, with a bias of the order 25-50 %, increasing towards lower metallicity. This atmospheric depletion mechanism is a probable explanation to why the stellar abundances of lithium fall short of the predictions from standard Big Bang nucleosynthesis. Finally, I apply a 3D NLTE abundance analysis to the red giant SMSS 0313-6708, which is the most iron-deficient star known. The chemical abundance pattern of this star indicates that it formed from gas affected only by Big Bang nucleosynthesis and a single faint supernova. Comparison of the inferred abundance pattern to theoretical predictions leads to constraints on the explosion mechanism and the mass of the metal-free progenitor star.
70

Model atmospheres of sub-stellar mass objects

Hubeny, Ivan 07 1900 (has links)
We present an outline of basic assumptions and governing structural equations describing atmospheres of sub-stellar mass objects, in particular the extrasolar giant planets and brown dwarfs. Although most of the presentation of the physical and numerical background is generic, details of the implementation pertain mostly to the code COOLTLUSTY. We also present a review of numerical approaches and computer codes devised to solve the structural equations, and make a critical evaluation of their efficiency and accuracy.

Page generated in 0.0784 seconds