Spelling suggestions: "subject:"radiative heat transfer"" "subject:"radiatives heat transfer""
11 |
Monte Carlo Solution Of A Radiative Heat Transfer Problem In A 3-d Rectangular Enclosure Containing Absorbing, Emitting, And Anisotropically Scattering MediumDemirkaya, Gokmen 01 December 2003 (has links) (PDF)
In this study, the application of a Monte Carlo method (MCM) for radiative heat transfer in three-dimensional rectangular enclosures was investigated. The study covers the development of the method from simple surface exchange problems to enclosure problems containing absorbing, emitting and isotropically/anisotropically scattering medium.
The accuracy of the MCM was first evaluated by applying the method to cubical enclosure problems. The first one of the cubical enclosure problems was prediction of radiative heat flux vector in a cubical enclosure containing purely, isotropically and anisotropically scattering medium with non-symmetric boundary conditions. Then, the prediction of radiative heat flux vector in an enclosure containing absorbing, emitting, isotropically and anisotropically scattering medium with symmetric boundary conditions was evaluated. The predicted solutions were compared with the solutions of method of lines solution (MOL) of discrete ordinates method (DOM).
The method was then applied to predict the incident heat fluxes on the freeboard walls of a bubbling fluidized bed combustor, and the solutions were compared with those of MOL of DOM and experimental measurements.
Comparisons show that MCM provides accurate and computationally efficient solutions for modelling of radiative heat transfer in 3-D rectangular enclosures containing absorbing, emitting and scattering media with isotropic and anisotropic scattering properties.
|
12 |
Développement d'un code de transfert radiatif et de son couplage avec un code LES / Development of a radiative transfer code and its coupling with a LES codeRefahi, Sorour 18 February 2013 (has links)
Les transferts radiatifs jouent un rôle important dans les chambres de combustion des installations industrielles. En effet, il existe un couplage fort entre la combustion turbulente et le rayonnement. Dans le but d’étudier ce couplage, le code Rainier est développé pour les calculs de pertes par rayonnement dans un écoulement réactif dans des géométries complexes. Ce code repose sur des simulations aux grandes échelles (LES) de la combustion turbulente. Il est basé sur les maillages tétraédriques non structurés. Le modèle de rayonnement appliqué à la modélisation des propriétés radiatives des gaz est le modèle CK (Correlated-k). La méthode statistique de Monte-Carlo (ERM) est utilisée pour résoudre l’équation de Transfert du Rayonnement (ETR). Le code de rayonnement est parallélisé et il montre une réponse linéaire en fonction du nombre de processeurs très proche de la réponse idéale. Une méthode de couplage de code de rayonnement avec le code de combustion LES est développée. Chacun des codes a sa propre logique d’architecture et de développement. En conséquence, le couplage entre les deux domaines d’étude est réalisé de telle façon que les échanges des données et les synchronisations entre eux soient assurés. Les résultats obtenus à partir du couplage des sur une chambre de combustion d’hélicoptère sont présentés. Nous avons montré que le rayonnement modifie les champs instantanés de température et d’espèces à l’intérieur de la chambre de combustion. / Radiation plays an important role in industrial combustion chambers. In fact, there is a strong coupling between combustion and heat transfer in these turbulence chambers. The Rainier code is developed for the calculation of radiation in a reactive flow within a complex geometry. This code is dedicated to Large Eddy Simulation (LES) of turbulent reactive flows. The code is based on unstructured tetrahedral mesh. The correlated k-distribution method (CK) is applied to the modelling of radiative properties of gases. A statistical method of Monte Carlo (ERM) is used to resolve the Radiation Transfer Equation (RTE). The code is parallelized and it shows a linear response to the number of processors, which is very close to the ideal response. A coupling method of the Rainier code and the turbulent combustion code LES is implemented. Each code has its own logic architecture and development. For this, the coupling between these two different fields of study is achieved in such a way that the data exchange and synchronization between them is assured. The results obtained by applying the coupled codes to the combustion chamber of helicopter are presented. We have shown that the radiative transfer modifies the temperature and species fields inside the combustion chamber.
|
13 |
THERMAL RADIATION BETWEEN AND THROUGH NATURAL HYPERBOLIC MATERIALSHakan Salihoglu (11191989) 27 July 2021 (has links)
<p>Understanding of thermal transport in small scales gains more importance
with increasing demand in microelectronics and advancing fabrication
technologies. In addition, scarce in energy sources adds more pressure with
increasing expectations on research in energy conversion devices and renewable
energies. In parallel to these, new phenomena observable only in small scales
are discovered with the research, bringing more opportunities for engineers to
solve real-world problems by applying the discoveries and more questions to
answer. Thermal radiation as a thermal transport phenomenon is the epicenter of
this research. Recent developments such as near-field radiative heat transfer
exceeding blackbody radiation or control of radiative cooling via biasing grows
the attraction on thermal radiation because these examples challenge our
long-lasting understanding of nature. Exploring nature further in the small
scale may help us meet the expectations mentioned above.</p>
<p> </p>
<p>In this thesis work, first, we carry out analyses on radiative heat transfer of natural
hyperbolic material, calcite, and compare to that of a polar material SiC. Our
study reveals that the high-
modes within the hyperbolic bands are
responsible for the substantial enhancement in near field radiation. Comparison
of calcite with SiC illustrates the significance of the high-
modes in calcite vs. surface polariton modes
in SiC in their contributions to near-field radiation enhancement, for
temperature differences ranging from 1 K to 400 K. We also noticed that the
contributions of high-
modes in calcite to near-field radiation is
comparable to that of surface polaritons in SiC. The results of these analyses
will be helpful in the search of hyperbolic materials that can enhance near
field radiative transfer.</p>
<p> </p>
<p>Second, we demonstrate an experimental
technique to measure near-field radiative heat transfer between two parallel
plates at gap distances ranging from a few nanometers to far-field. A
differential measurement circuit based on resistive thermometry to measure the
defined temperatures are explained. To predict the defined temperatures, a
computational method is utilized. We also detail an alignment technique that
consists of a coarse and fine alignment in the relevant gap regions. This
technique presents a method with high precision for gap measurement, dynamic
gap control, and reliable sensitivity for extreme near-field measurements.
Finally, we report experimental results that
shows 18,000 times enhancement in radiative heat transfer between two parallel
plates.</p>
<p> </p>
<p>Third, we analyze near-field radiative transfer due to hyperbolic phonon
polaritons, driven by temperature gradient inside the bulk materials. We
develop a mesoscale many-body scattering approach to account for the role of
hyperbolic phonon polaritons in radiative transfer in the bulk and across a
vacuum gap. Our study points out the equivalency between the bulk-generated
mode and the surface mode in the absence of a temperature gradient in the
material, and hence provide a unified framework for near-field radiative
transfer by hyperbolic phonon polaritons. The results also elucidate
contributions of the bulk-generated mode and the bulk temperature profile in
the enhanced near-field radiative transfer.</p>
<p> </p>
<p>Forth, we study radiative heat transfer in
hyperbolic material, hyperbolic boron nitride (hBN), and show a major
contribution to energy transport arising from phonon polaritons supported in
Reststrahlen bands. This contribution increases spectral radiative transfer by
six orders of magnitude inside Reststrahlen bands compared to that outside
Reststrahlen bands. The equivalent radiative thermal conductivity increases
with temperature increase, and the radiative thermal conductivity can be of the
same order of the phonon thermal conductivity. Experimental measurements are
discussed. We showed the radiative contribution can account for as much as 27 % of the total thermal transport at 600 K.
Hence, in hBN the radiative thermal transport can be comparable to thermal
conduction by phonons. We also demonstrate contribution of polaritons to
thermal transport in MoO<sub>3</sub>. To calculate radiative heat transfer in
three principal coordinates separately, we modify and apply the derived
many-body model. Our analysis shows that radiative thermal conductivity in both
in- and out-of-plane directions increases with temperature and contribution to
energy transport by polaritons exceeds that by phonons.</p>
<p> </p>
Fifth, we build an experimental setup to examine
near-field properties of materials using an external thermal source. The nanospectroscopy
setup combines near-field microscopy technique, near-field scanning optical
microscopy (NSOM), and Fourier-transform infrared (FTIR) spectroscopy. We
further explain challenges in building a nanospectroscopy setup using a weak
thermal source and coupling two techniques. This method enables us to investigate
spectral thermal radiation and local dielectric properties in nanoscale.
|
14 |
Investigating the far- and near-field thermal radiation in carbon-based nanomaterialsZhang, Zihao 07 January 2016 (has links)
Two classes of carbon nanomaterials—carbon nanotubes and graphene—have promoted the advancement of nanoelectronics, quantum computing, chemical sensing and storage, thermal management, and optoelectronic components. Studies of the thermal radiative properties of carbon nanotube thin film arrays and simple graphene hybrid structures reveal some of the most exciting characteristic electromagnetic interactions of an unusual sort of material, called hyperbolic metamaterials. The features and results on these materials in the context of both far-field and near-field radiation are presented in this dissertation.
Due to the optically dark nature of pyrolytic carbon in the wavelength range from visible to infrared, it has been suggested vertically aligned carbon nanotube (VACNT) coatings may serve as effective radiative absorbers. The spectral optical constants of VACNT are modeled using the effective medium theory (EMT), which is based on the anisotropic permittivity components of graphite. The effects of other EMT parameters such as volume filling ratio and local filament alignment factor are explored. Low reflectance and high absorptance are observed up to the far-infrared and wide range of oblique incidence angles. The radiative properties of tilt-aligned carbon nanotube (TACNT) thin films are illustrated. Energy streamlines by tracing the Poynting vectors are used to show a self-collimation effect within the TACNT thin films, meaning infrared light can be transmitted along the axes of CNT filaments.
Graphene, a single layer sheet of carbon atoms, produces variable conductance in the terahertz frequency regime by tailoring the applied voltage gating or doping. Periodically embedding between dielectric spacers, the substitution of graphene provides low radiative attenuation compared to traditional metal-dielectric multilayers. The hyperbolic nature, namely negative angle of refraction, is tested on the graphene-dielectric multilayers imposed with varying levels of doping. EMT should be valid for graphene-dielectric multilayers due to the nanometers-thick layers compared to the characteristic wavelength of infrared light. For metal- or semiconductor-dielectric multilayers with thicker or lossier layers, EMT may not hold. The validity of EMT for these multilayers is better understood by comparing against the radiative properties determined by layered medium optics.
When bodies of different temperatures are separated by a nanometers-size vacuum gap, thermal radiation is enhanced several-fold over that of blackbodies. This phenomenon can be used to develop more efficient thermophotovoltaic devices. Due to their hyperbolic nature, VACNT and graphite are demonstrated to further increase evanescent wave tunneling. The heat flux between these materials separated by vacuum gaps smaller than a micron is vastly improved over traditional semiconductor materials. A hybrid structure composed of VACNT substrates covered by doped graphene is analyzed and is shown to further improve the heat flux, due to the surface plasmon polariton coupling between the graphene sheets.
|
15 |
Projeto de estruturas sujeitas à radiação térmica no interior de confinamentos utilizando o método da otimização topológica. / Design of radiant enclosures using topology optimization.Castro, Douglas de Aquino 06 December 2013 (has links)
Estruturas que estão sujeitas a altas temperaturas absolutas, à convecção natural, ou ainda, estruturas que trocam calor na ausência de um meio físico, apresentam relevante transferência de calor por radiação térmica. Este fenômeno é importante para diversas aplicações e processos, como, por exemplo, no funcionamento de coletores solares, satélites, fornos industriais, motores a combustão e usinas nucleares. O presente trabalho de mestrado apresenta a aplicação do método da otimização topológica (MOT) no projeto de estruturas que trocam calor substancialmente por radiação térmica no interior de confinamentos, através da distribuição de material refletor ou de aquecedores. Por meio do MOT, cuja principal característica é a liberdade de distribuição do material dentro de um domínio inicial, é possível adicionar ou remover material de uma determinada região do domínio, criando ou desfazendo fronteiras, de forma livre, visando à obtenção de um projeto otimizado. O algoritmo de otimização é baseado no Método das Assíntotas Móveis (MMA) e é complementado pelo Método dos Elementos Finitos (MEF), para a análise do fenômeno de radiação em confinamentos. Ambos são implementados através do software Matlab. Os casos considerados são o da distribuição de material refletor de radiação térmica ou de aquecedores, sujeitos a uma eventual restrição nas quantidades destes materiais, sobre uma superfície plana, de forma a extremizar-se a irradiação ou a minimizar-se a temperatura em determinada área específica do domínio de projeto. Este problema depende, dentre outros fatores, da geometria da superfície e dos ângulos dos raios incidentes sobre ela. / Structures subjected to high absolute temperatures or to natural convection, as well structures that exchange heat in the absence of a physical medium present significant heat transfer through thermal radiation. This phenomenon is important for several applications and processes, such as in the operation of solar collectors, satellites, industrial furnaces, combustion engines and nuclear plants. The present work shows the application of topology optimization to the design of structures that exchange heat substantially by thermal radiation within an enclosure, through the distribution of reflective material or heaters. However, the design of such radiant enclosures is not trivial and it is necessary to use robust and systematic design tools, such as optimization techniques. Topology optimization is a numerical method which allows finding the layout, or topology, of a structure such that a prescribed objective is maximized or minimized subjected to design constraints. The optimization algorithm, based on the method of moving asymptotes (MMA), and the finite element method for analysis of the phenomenon of radiation in enclosures, are implemented using $Matlab^\\circledR$. The cases considered are the distribution of thermal radiation reflective material or heaters, subjected to a volume fraction constraint of these materials on a flat surface, in order to extremize the irradiation or to minimize the temperature in a specified region of the design domain. This problem depends, among other factors, on the geometry of the surfaces that exchange heat through thermal radiation.
|
16 |
Interactions between the reaction zone and soot field in a laminar boundary layer type diffusion flameFuentes, Andres January 2006 (has links)
The concurrent spreading of a boundary layer type diffusion flame is studied. The impossibility of obtaining a low velocity laminar flow without any perturbation induced by buoyancy has lead to the development of an experimental apparatus for use in micro-gravity facilities. Based on previous experimental observations, an original numerical approach has been developed showing, first the dominating role of the radiative heat transfer on the structure of the flame and second the major role of the soot on the extinction phenomenon at the flame trailing edge. The influence of the forced flow velocity, the fuel injection velocity and oxygen concentration on the geometry of the flame has been examined by imaging of CH* and OH* radicals spontaneous emission. Laser-Induced Incandescence (LII) is used to determine the soot field concentration in the flame. The soot formation has been studied by Laser Induced Fluorescence (LIF) of Polycyclic Aromatic Hydrocarbons (PAHs). The interaction between the reaction zone and the field of soot formation/oxidation is taken into account to analyze the flame length. These results can be used as the experimental input data for a future complete validation of numerical model simulating the soot formation and oxidation in this kind of flame.
|
17 |
An Evaluation of Shadow Shielding for Lunar System Waste Heat RejectionWorn, Cheyn 2012 May 1900 (has links)
Shadow shielding is a novel and practical concept for waste heat rejection from lunar surface spacecraft systems. A shadow shield is a light shield that shades the radiator from parasitic thermal radiation emanating from the sun or lunar surface. Radiator size and mass can reduce if the radiator is not required to account for parasitic heat loads in addition to system energy rejection requirements. The lunar thermal environment can be very harsh towards radiative heat rejection. Parasitic heat loads force the radiator to expand in size and mass to compensate. On the Moon, there are three types: surface infrared, solar insulation, and albedo. This thesis tests shadow shielding geometry and its effect on the radiator and nuclear reactor in a reactor-powered Carnot heat engine. Due to the nature of cooling by radiative heat transfer, the maximum shaft work a Carnot system can produce and the minimal required radiator area occurs when the Carnot efficiency is 25%.
First, a case for shadow shielding is made using an isothermal, control radiator model in Thermal Desktop. Six radiator temperatures and three latitudes are considered in the tests. Test variables in this section include radiator shapes and shade geometry. The simulations found that shadow shielding is best suited for a low-temperature radiator at the lunar equator. Optimized parabolic shade geometry includes a focus right above or at the top of the radiator and full to three-quarters shade height. The most useful rectangular radiator shape for shadow shielding is that which has a low height and long width.
All simulations were conducted using a shade with a 10 kg/m2 area mass. A sensitivity study was conducted for different shade area masses using high and low values found in the literature. The shade is the most useful when the shade's area mass is less than or equal to that of the radiator. If the shade mass is below this threshold, the shade would be applicable to all radiator temperatures tested.
Optimized shade and radiator geometry results were then factored into a second model where the radiator is comprised of heat pipes which is similar to radiators from actual system designs. Further simulations were conducted implementing the SAFE-4001 fast fission nuclear reactor design. The study found that shadow shielding allowed the system to use a low-temperature radiator where other configurations were not viable because shadow shielding drastically improves radiative heat transfer from the radiator, but at the consequence of raising radiator mass.
|
18 |
Mathematical Modeling Of Fluidized Bed Combustors With Radiation ModelAlagoz, Duriye Ece 01 August 2006 (has links) (PDF)
Simultaneous solution of the conservation equations for energy and chemical species in conjunction with radiative transfer equation was carried out by coupling a previously developed and tested system model of fluidized bed combustion (FBC) to an existing radiation model.
The predictive accuracy of the coupled code was assessed by applying it to 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) Test Rig burning lignite in its own ash and comparing its predictions with the measured temperatures and concentrations of gaseous species along the combustor and radiative heat fluxes incident on the refractory-lined freeboard walls on two combustion tests, with and without recycle. The predictions of the coupled code were found to be in good agreement with the measurements.
For the investigation of the significance of coupling of the radiation model to the system model, temperature predictions of the coupled code were compared with those obtained by the original system model. It was found that the effect of incorporating a radiation model into the system model on the predictions was not significant because the high temperatures of refractory-lined freeboard walls and high surface to volume ratio of the test rig under consideration cause the incident radiative heat fluxes to be dominated by walls rather than the particle laden gas emissions. However, in industrial boilers, freeboard is surrounded by water-cooled membrane walls and boilers have much lower surface to volume ratio. In order to examine the effects of both on radiation in industrial boilers, an investigation was carried out on 16 MWt Stationary Fluidized Bed Boiler (SFBB) by applying radiation model, in isolation from the system model, to the freeboard of the boiler. It was found that in the boiler, incident radiative heat fluxes were dominated by particle laden gas emissions.
In brief, the coupled code proposed in this study proves to be a useful tool in qualitatively and quantitatively simulating the processes taking place in an atmospheric fluidized bed boilers.
|
19 |
Numerical Investigation Of Natural Convection From Plate Finned Heat SinksMehrtash, Mehdi 01 September 2011 (has links) (PDF)
Finned heat sink use for electronics cooling via natural convection is numerically investigated. An experimental study from the literature that is for vertical surfaces is taken as the base case and the experimental setup is numerically modeled using commercial CFD software. The flow and temperature fields are resolved. A scale analysis is applied to produce an order-of-magnitude estimate for maximum convection heat transfer corresponding to the optimum fin spacing. By showing a good agreement of the results with the experimental data, the model is verified. Then the model is used for heat transfer from inclined surfaces. After a large number of simulations for various forward and backward angles between 0-90 degrees, the dependence of heat transfer to the angle and Rayleigh number is investigated. It is observed that the contributions of radiation and natural convection changes with the angle considerably. Results are also verified by comparing them with experimental results available in literature.
|
20 |
HEAT TRANSFER CHARACTERISTICS IN WILDLAND FUELBEDSEnglish, Justin 01 January 2014 (has links)
The fundamental physics governing wildland fire spread are still largely misunderstood. This thesis was motivated by the need to better understand the role of radiative and convective heat transfer in the ignition and spread of wildland fires. The focus of this work incorporated the use of infrared thermographic imaging techniques to investigate fuel particle response from three different heating sources: convective dominated heating from an air torch, radiative dominated heating from a crib fire, and an advancing flame front in a laboratory wind tunnel test. The series of experiments demonstrated the uniqueness and valuable characteristics of infrared thermography to reveal the hidden nature of heat transfer and combustion aspects which are taking place in the condensed phase of wildland fuelbeds. In addition, infrared thermal image-based temperature history and ignition behavior of engineered cardboard fuel elements subjected to convective and radiative heating supported experimental findings that millimeter diameter pine needles cannot be ignited by radiation alone even under long duration fire generated radiant heating. Finally, fuel characterization using infrared thermography provided a better understanding of the condensed phase fuel pyrolysis and heat transfer mechanisms governing the response of wildland fuel particles to an advancing flame front.
|
Page generated in 0.1145 seconds