Spelling suggestions: "subject:"radicals"" "subject:"adicals""
361 |
Analysis of free radical characteristics in biological systems based on EPR spectroscopy, employing blind source separation techniquesRen, Jiyun., 任紀韞. January 2006 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
|
362 |
Hydrogen Bonded Phenols as Models for Redox-Active Tyrosines in EnzymesUtas, Josefin January 2006 (has links)
<p>This thesis deals with the impact of hydrogen bonding on the properties of phenols. The possibility for tyrosine to form hydrogen bonds to other amino acids has been found to be important for its function as an electron transfer mediator in a number of important redox enzymes. This study has focused on modeling the function of tyrosine in Photosystem II, a crucial enzyme in the photosynthetic pathway of green plants.</p><p>Hydrogen bonds between phenol and amines in both inter- and intramolecular systems have been studied with quantum chemical calculations and also in some solid-state structures involving phenol and imidazole.</p><p>Different phenols linked to amines have been synthesized and their possibilities of forming intra- and intermolecular hydrogen bonds have been studied as well as the thermodynamics and kinetics of the generation of phenoxyl radicals via oxidation reactions.</p><p>Since carboxylates may in principle act as hydrogen bond acceptors in a manner similar to imidazole, proton coupled electron transfer has also been studied for a few phenols intramolecularly hydrogen bonded to carboxylates with the aim to elucidate the mechanism for oxidation. Electron transfer in a new linked phenol—ruthenium(II)trisbipyridine complex was studied as well.</p><p>The knowledge is important for the ultimate goal of the project, which is to transform solar energy into a fuel by an artificial mimic of the natural photosynthetic apparatus</p>
|
363 |
Far infrared laser magnetic resonance spectroscopy of free radicalsLiu, Yuyan January 1996 (has links)
No description available.
|
364 |
Forays into magnetic and electronic interactions, near infrared dyes and luminescenceHarden, Nicholas C. January 2000 (has links)
No description available.
|
365 |
Radiation effects on biochemical systemsSeddon, Gavin M. January 2000 (has links)
No description available.
|
366 |
Exercise and DNA damage and repair in middle aged men / Matthew Andrew AikmanAikman, Matthew Andrew January 2007 (has links)
Regular physical activity (PA) leads to an increased quality of life by means of certain
physiological adaptations. Regular PA is beneficial to the human body and its functionality,
including the physiological, biochemical and even psychological modalities. During PA an
increased burden is placed on all physiological mechanisms due to the increased energy demand,
resulting in an adaptation of the physiological systems. Currently the biochemical mechanisms
by which these adaptations occur are not well understood or defined.
During the flow of electrons through the electron transport chain in the mitochondria free
radicals and reactive oxygen species (ROS) are produced. PA results in increased ROS
production. The relationship of different exercise intensities and ROS production with resulting
DNA damage is unclear. These free radicals and ROS disturb the pro-oxidant anti-oxidant
balance resulting in oxidative stress. When this balance is disturbed oxidative stress could lead to
potential oxidative damage, Oxidative damage occurs in lipid, protein and nucleic acid
macromolecules. ROS can attack DNA bases or deoxyribose residues to produce damaged bases
and/or single and double strand breaks. When the DNA is regarded and the damages are
replicated it could cause mutations or apoptosis, affecting the cell function and physiology.
The purpose of this study was to investigate the influence of different aerobic intensities on
oxidative DNA damage and repair in middle aged men by means of the Comet assay. Five PA
males and five physically inactive males were assigned to an experimental and control group
respectively. The subjects did not differ significantly at baseline. The VO2-max of each subject
was determined at baseline. Subjects were then randomly assigned to 60, 70, 80 and 90% of
individual baseline VO2-max intensities for an acute exercise intervention of 30 minutes on a
bicycle ergometer. Blood sampling was done at baseline, post-exercise and 24 hours post-exercise
for oxygen radical absorbance capacity (ORAC) and hydroperoxide analysis (dROM).
Peripheral blood was obtained for DNA damage testing by means of Comet analysis at baseline,
post-exercise, 5, 15, 30 minutes, and also 6, 12, 24, 48 and 72 hours after exercise. The results
obtained indicated that subjects who regularly participate in PA had an increased baseline
reading of ORAC and dROM values. ORAC levels after each acute exercise session increased,
with the highest increase in the control group, with a decrease in the direction of baseline
readings 24 hours post exercise. A biphasic damage-repair cycle over the 72 hour period was
observed with the Comet analysis. The most damaged cells occur directly after acute exercise.
The highest incidence of DNA damage over a 72 hour period was observed at 70% VO2-max,
with the least amount of damage after 90% VO2-max.
In conclusion the study indicates stress proteins or other kinds of physiological reaction to
minimize the damaging effect of oxidative stress, is in place to restore the cell's homeostasis.
Thus PA results in the development of oxidative DNA damage. To minimize DNA damage the
optimal intensity for acute physical exercise is between 70-80% VO2-max. At higher intensities
the release of stress proteins are initiated to buffer the damaging effect of oxidative stress and to
restore homeostasis. / Thesis (M.Sc. (Human Movement Science))--North-West University, Potchefstroom Campus, 2007.
|
367 |
Liquid crystals with novel terminal chains as ferroelectric liquid crystal hostsCosquer, Guirec Yann January 2000 (has links)
No description available.
|
368 |
Investigation of combustion and performance characteristics of CAI combustion engine with positive and negative valve overlapYang, Changho January 2008 (has links)
In the first part of studies, Controlled Auto-Ignition (CAI) combustion was investigated in a Ricardo E6 single cylinder, four stroke gasoline engine. CAI combustion is achieved by employing positive valve overlap configuration in combination with various compression ratios and intake air temperature strategies. The CAI operational region is limited by engine load due to knock and partial burned boundaries. The combustion characteristics and emissions are studied in order to understand the major advantages and drawbacks of CAI combustion with positive valve overlap. The enlargement of the CAI operational region is obtained by boosting intake air and external EGR. The lean-boosted operation elevators the range of CAI combustion to the higher load region, and the use of external EGR allows the engine to operation with CAI combustion in the mid range of region between boosted and N/A CAI operational range. The results are analyzed and combustion characteristics, performance and emissions are investigated. A Ricardo Hydra single cylinder, four stroke optical gasoline engine with optical access is then experimented to investigate CAI combustion through negative valve overlap configuration and an intake heater. The effects of direct fuel injection timings spark timings and air/fuel ratio are studied by means of simultaneous incylinder heat release study and direct visualization, chemiluminescence techniques which uses full, OH radical and CHO species. Both heat release analysis and chemiluminescence results have identified the pressure of minor combustion during the NVO period. Both the charge cooling and local air/fuel ratio effects are also investigated by varying the quantity of direct air injection.
|
369 |
Poruchy buněčného metabolismu jako společný patofyziologický mechanismus onemocnění CNS / Impairment of cellular metabolism as common pathophzsiological mechanism of CNS diseasesHasala, Ondřej January 2012 (has links)
Name of thesis: Impairment of cellular metabolism as common pathophysiological mechanism of CNS diseases Problem definition: Every human cell needs energy for living. If the prodcution of ATP (as an universal energy carrier) is broken, cell restricts its activity first and during longterm depletion of ATP, dies. It was found, that cellular metabolism is broken in most pathologies in CNS. Disorder of respiratory chain by free radicals is the best known at Parkinson's disease, epilepsy, brain ischemia etc. Mitochondria, where respiratory chain is situated, is not only the aim of free radicals, but it is their major producer. The activity of respiratory chain decreases during the life and this phenomenan is called aging. Aim of thesis: To determine whether there is increased production of free radicals in mitochondria of rat (LE Wistar) hippocampus during the epileptic seizure. Method: Thesis involves experiment which was done with acute rat hippocampal slices. To induce epileptic seizure it was used 4-aminopyridine model. It was used fluorescence imaging as imaging method. Changes of superoxide production was detected with MitoSOX. Electrophysiological record was taken by programme Spike 2 with stimulation and recording electrode inside the slice. Results: There was no significant difference between...
|
370 |
Préparation et étude de nouveaux dinitroxydes comme agents de polarisation en polarisation dynamique nucléaire (PDN) en phase solide / Preparation and study of new dinitroxydes as polarizing agents in dynamic nuclear polarization (DNP) in solid stateYsacco, Cedric 20 November 2012 (has links)
Préparation et étude de nouveaux dinitroxydes comme agents de polarisation en polarisation dynamique nucléaire (PDN) en phase solide. La principale limite de la RMN, en tant qu'outil de détection ou d'imagerie (IRM), est sa faible sensibilité qui résulte principalement de la faible différence d'énergie entre les états de spin nucléaire entre lesquels on observe la résonance. A l'équilibre thermique, la polarisation nucléaire PI (différence de population entre les états de spin) est très faible et le signal RMN, qui lui est proportionnel, sera peu intense. Le but de la Polarisation Dynamique Nucléaire (PDN) est d'augmenter l'intensité de signaux de RMN, en transférant vers des spins nucléaires de la polarisation de spin électronique PS, plus élevée que celle des spins nucléaires (PS/PI = 658 pour 1H). Depuis une quinzaine d'années, la PDN connaît un regain d'intérêt et un champ de développement exceptionnels. Cette renaissance de la PDN est surtout due aux importants travaux de fond du groupe de R. G. Griffin et ceux plus récents du groupe d'Ardenkjaer-Larsen. Ces travaux ont entre autre montré qu'avec des radicaux trityl ou des dinitroxydes, la PDN pouvait permettre d'atteindre de fortes augmentations du rapport signal sur bruit, en RMN en phases solide et liquide. Les propriétés de l'espèce paramagnétique à partir de laquelle se fait le transfert de polarisation spin électronique - spin nucléaire, jouent un rôle primordial dans l'efficacité de ce transfert. Au cours de notre travail, nous avons réalisé les synthèses de cinq nouveaux biradicaux de la famille des dinitroxides. / Preparation and study of new dinitroxydes as polarizing agents in dynamic nuclear polarization (DNP) in solid state. Nowadays, nuclear magnetic resonance (NMR) spectroscopy is one of the most important structure elucidation techniques in chemistry and biochemistry, NMR is also the underlying principle of magnetic resonance imaging (MRI). However, the use of NMR to investigate various materials or biological systems is still limited by its inherent low sensitivity. This arises from the relatively small size of the Zeeman interaction of the nuclear spins with an external magnetic field which leads to small Boltzmann polarizations (PI) and weak NMR signals. Dynamic Nuclear Polarization (DNP) is a prominent process to achieve a high non-equilibrium nuclear spin polarization by transferring to nuclear spins the higher electron spin polarization PS (PS/PI = 658 for 1H)) of unpaired electrons, belonging for example to stable free radicals. The past fifteen years has witnessed a renaissance in the use of DNP. This renewed interest is due to the outstanding work of the R. G. Griffin's group and the more recent work of the Ardenkjaer-Larsen's group. These authors have shown, among other, that with the use of trityl radicals or dinitroxides, PDN allowed to reach impressive signal enhancements for solid state and liquid NMR. The characteristics of the paramagnetic species used as polarizing agent play a pivotal role in the efficiency of a DNP process. In the course of our work we have performed the synthesis of five new dinitroxides, and through collaborations we tested their performance as polarizing agents for solid state PDN at 100 K, 9,4 T [263 GHz (RPE), 400 MHz (RMN)].
|
Page generated in 0.0558 seconds