• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Radio Access Network Design for the Evolved UMTS Network

Yan, Xinzhi January 2010 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / The Radio Access Network (RAN) accounts for the major proportion of the UMTS system operating cost. Transmission from radio base station sites contributes a larger part of the RAN operating costs. Selection of suitable transport technologies and proper allocation of network resources are vital from an operator cost optimisation and the Quality of Experience (QoE) points of view. This thesis extensively investigated the performance of a RAN to support multimedia traffic on a HSDPA air interface. Transport network layer of a future RAN could be based on a number of transport protocols such as ATM, IP and Ethernet. With the increasing traffic volume and diversity the efficiencies of IP and Ethernet based RAN could increases significantly due to the use of larger payloads and simpler resource allocation techniques. Also, on IP and Ethernet based links relatively fewer overhead bits are transmitted compared to an ATM based link. Both the IP and Ethernet based links appear to perform better under heavy traffic load conditions. An IP based link could perform better than an Ethernet based link when an IP header compression technique is used. An Ethernet based link is an alternative transport technique for the UTRAN transport network due to its flexibility, economy and bandwidth efficiency. The HSDPA (High Speed Downlink Packet Access) is considered to be one of the initial evolutionary steps to enhance the data rate, and QoS of downlink data and multimedia services for the evolved UMTS network. It can provide high data rate up to 28.8 Mbps on the downlink shared channel using the packet access technique. A HSDPA network can dynamically adjust a connection data rate to match radio conditions to ensure the highest possible data rate for different type of traffic. Inappropriate RAN capacity allocation could lead to low radio resource or RAN resource utilizations. In this thesis, a Markov chain based analytical model has been developed to study the interaction between the air interface and the RAN for a HSDPA network. The analytical model was used to study interactions of RAN transport protocols, flow control techniques and the air interface transmission conditions. Further a simulation model was developed to investigate the relationship between the HSDPA air interface and its RAN parameters. Another important issue in the HSDPA network design is the scheduling algorithm used at the Node-B. A scheduling algorithm plays a key role in allocating a RAN’s network resources. Impacts of scheduling algorithms are studied in this work using a simulation model. Based on the study of the HSDPA air interface and its RAN parameter interactions this work has developed an adaptive resource management algorithm, which uses the measured air interface information to allocate the corresponding connection data rate on the Iub link. The developed algorithm reduces RAN resource requirements while increasing the air interface resource utilization and QoS of connections.
2

Optimised radio over fibre links for next generation radio access networks

Abbood, Abdul Nasser Abdul Jabbar January 2018 (has links)
Optical fibre has become the dominant theme of transmission in long haul, high data rate communication systems due to its tremendous bandwidth and low loss. Radio over Fibre (RoF) technology facilitates the seamless integration between wireless and optical communication systems and found to be the most promising solution to meet the exponential bandwidth demands expected for the upcoming years. However, the main bit-rate/distance limitation in RoF systems is the chromatic dispersion. In this thesis, the two generations of RoF technologies, namely Analogue RoF (ARoF) and Digital RoF (DRoF) are investigated. The overall aim of this research is to optimise the optical bandwidth utilisation of these two approaches for a typical transmission of the fronthaul link proposed in the next generation Centralised Radio Access Network (C-RAN). Consequently, a number of physical layer design scenarios for the optimised transmission of the Radio Frequency (RF) signals over a Standards Single Mode Fibre (SSMF) are demonstrated. Firstly, for an ARoF transmission, where the analogue RF signals are transported over SSMF using an optical carrier, a bidirectional link transmitting four Downlink/Uplink channels in a chromatic dispersion limited scenario is designed. Simulation results have shown a clear constellation diagram of a 2.5 Gb/s RF signal transmission over 120 km fibre length. Secondly, a DRoF system with reduced optical bandwidth occupancy is proposed. This system employs an optical Duobinary transmission to the digitised RF signal at the transmitter side to reduce its spectrum and to address the chromatic dispersion effect, simultaneously. Simulation results demonstrate the capability of the proposed system to maintain high-quality transmission of the digitised signals over 70 km of fibre distance without dispersion compensation requirements. Finally, an advanced DRoF transmission link based on integrating digital Optical Single Sideband (OSSB) transmission with Duobinary encoding scheme is designed. Simulation results have clearly verified system's robustness against transmission impairments and have better performances in terms of the obtained BER and EVM with respect to the 3GPP standardised values. Moreover, the results show that both transmission distance and power budget are furtherly improved in comparison with two other digital transmission scenarios.
3

Contribution to resource management in cellular access networks with limited backhaul capacity

Galeana Zapién, Hiram 25 February 2011 (has links)
La interfaz radio de los sistemas de comunicaciones móviles es normalmente considerada como la única limitación de capacidad en la red de acceso radio. Sin embargo, a medida que se van desplegando nuevas y más eficientes interfaces radio, y de que el tráfico de datos y multimedia va en aumento, existe la creciente preocupación de que la infraestructura de transporte (backhaul) de la red celular pueda convertirse en el cuello de botella en algunos escenarios. En este contexto, la tesis se centra en el desarrollo de técnicas de gestión de recursos que consideran de manera conjunta la gestión de recursos en la interfaz radio y el backhaul. Esto conduce a un nuevo paradigma donde los recursos del backhaul se consideran no sólo en la etapa de dimensionamiento, sino que además son incluidos en la problemática de gestión de recursos. Sobre esta base, el primer objetivo de la tesis consiste en evaluar los requerimientos de capacidad en las redes de acceso radio que usan IP como tecnología de transporte, de acuerdo a las recientes tendencias de la arquitectura de red. En particular, se analiza el impacto que tiene una solución de transporte basada en IP sobre la capacidad de transporte necesaria para satisfacer los requisitos de calidad de servicio en la red de acceso. La evaluación se realiza en el contexto de la red de acceso radio de UMTS, donde se proporciona una caracterización detallada de la interfaz Iub. El análisis de requerimientos de capacidad se lleva a cabo para dos diferentes escenarios: canales dedicados y canales de alta velocidad. Posteriormente, con el objetivo de aprovechar totalmente los recursos disponibles en el acceso radio y el backhaul, esta tesis propone un marco de gestión conjunta de recursos donde la idea principal consiste en incorporar las métricas de la red de transporte dentro del problema de gestión de recursos. A fin de evaluar los beneficios del marco de gestión de recursos propuesto, esta tesis se centra en la evaluación del problema de asignación de base, como estrategia para distribuir el tráfico entre las estaciones base en función de los niveles de carga tanto en la interfaz radio como en el backhaul. Este problema se analiza inicialmente considerando una red de acceso radio genérica, mediante la definición de un modelo analítico basado en cadenas de Markov. Dicho modelo permite calcular la ganancia de capacidad que puede alcanzar la estrategia de asignación de base propuesta. Posteriormente, el análisis de la estrategia propuesta se extiende considerando tecnologías específicas de acceso radio. En particular, en el contexto de redes WCDMA se desarrolla un algoritmo de asignación de base basado en simulatedannealing cuyo objetivo es maximizar una función de utilidad que refleja el grado de satisfacción de las asignaciones respecto los recursos radio y transporte. Finalmente, esta tesis aborda el diseño y evaluación de un algoritmo de asignación de base para los futuros sistemas de banda ancha basados en OFDMA. En este caso, el problema de asignación de base se modela como un problema de optimización mediante el uso de un marco de funciones de utilidad y funciones de coste de recursos. El problema planteado, que considera que existen restricciones de recursos tanto en la interfaz radio como en el backhaul, es mapeado a un problema de optimización conocido como Multiple-Choice Multidimensional Knapsack Problem (MMKP). Posteriormente, se desarrolla un algoritmo de asignación de base heurístico, el cual es evaluado y comparado con esquemas de asignación basados exclusivamente en criterios radio. El algoritmo concebido se basa en el uso de los multiplicadores de Lagrange y está diseñado para aprovechar de manera simultánea el balanceo de carga en la intefaz radio y el backhaul.
4

Fuzzy-Logic Based Call Admission Control in 5G Cloud Radio Access Networks with Pre-emption

Sigwele, Tshiamo, Pillai, Prashant, Alam, Atm S., Hu, Yim Fun 31 August 2017 (has links)
Yes / Fifth generation (5G) cellular networks will be comprised of millions of connected devices like wearable devices, Androids, iPhones, tablets and the Internet of Things (IoT) with a plethora of applications generating requests to the network. The 5G cellular networks need to cope with such sky-rocketing tra c requests from these devices to avoid network congestion. As such, cloud radio access networks (C-RAN) has been considered as a paradigm shift for 5G in which requests from mobile devices are processed in the cloud with shared baseband processing. Despite call admission control (CAC) being one of radio resource management techniques to avoid the network congestion, it has recently been overlooked by the community. The CAC technique in 5G C-RAN has a direct impact on the quality of service (QoS) for individual connections and overall system e ciency. In this paper, a novel Fuzzy-Logic based CAC scheme with pre-emption in C-RAN is proposed. In this scheme, cloud bursting technique is proposed to be used during congestion, where some delay tolerant low-priority connections are pre-empted and outsourced to a public cloud with a penalty charge. Simulation results show that the proposed scheme has low blocking probability below 5%, high throughput, low energy consumption and up to 95% of return on revenue.
5

Design and Implementation of an Efficient Intrusion Response System for 5G RAN Baseband Units / Design och implementering av ett effektivt intrångsresponssystem för 5G RAN-basbandsenheter

Ghazzawi, Mirna, Imran, Adil January 2023 (has links)
The 5G Radio Access Network (RAN) is a critical system that must be secured against potential attacks, particularly its Base-Band Unit (BBU), which is a common target for intrusions. Ericsson, which is a big provider of such systems, has placed significant emphasis on implementing Intrusion Detection Systems (IDS) to detect threats. However, the attention given to Intrusion Response Systems (IRS) in general is limited, with current challenges including false alarms, response cost, response time and reliability. Also, the hardware limitations of the BBU present difficulties in designing an effective IRS. To address these challenges, a semi-automated IRS was implemented with a dynamic and cost-based response selection approach. Open Source SECurity (OSSEC), which is a free, open-source endpoint detection and response tool, was employed to execute the selected responses. The effectiveness of the IRS was assessed based on Ericsson's requirements, reliability, response time, response cost and false alarms. The results obtained show that the proposed IRS is reliable as it can handle a huge number of intrusions and has negligible performance overhead in less extreme attack cases. These findings offer valuable insights into addressing intrusions within a system with constrained hardware resources.
6

Radio-over-Free-Space Optical Fronthauling for Cloud Radio Access Networks

Ahmed, Khaled January 2019 (has links)
The increasing demand on user rates in the fifth generation (5G) requires network architectures that can support high data rates with acceptable reliability. In order to increase the data rates in the presence of the current spectrum crisis, shrinking cells and reusing the spectrum is a proposed solution. Conventional implementation of dense cells requires a large number of expensive BSs to locally process and decode users’ signals. Another limiting factor that degrades the performance in a dense network is the inter-cell interference. A cloud radio access network (CRAN) is a promising solution to those cost, complexity, and interference challenges. A typical CRAN architecture consists of simplified low-cost base stations (BSs), termed radio units (RUs), that collect the radio frequency (RF) user equipments’ (UEs) signals and forward them over the fronthaul links to the central office (CO) where signal processing is done over shared resources. Besides the reduced cost and complexity of a CRAN, the joint processing at the CO enables joint interference mitigation techniques. However, the performance of CRANs depends critically on the availability of reliable fronthaul links with large bandwidth that may be expensive. Analog optical fronthaul links provide high data rates at lower cost and complexity since UEs’ signals are optically analog-modulated without digitalization, however, they suffer from other channel impairments and nonlinearities. In this thesis, analog optical fronthaul topologies are considered in which radio signals are forwarded over free-space optical (FSO) links, termed radio-over-free-space optical (RoFSO) links, and optical fiber (OF) links, termed radio-over-fiber (RoF) links. Firstly, a CRAN with mixed RF/RoFSO fronthaul is considered to investigate the performance improvement when RF fronthaul links are replaced one-by-one by RoFSO links. A novel joint optimization problem is introduced for the given architecture in which the weighted sum of UEs’ rates is maximized by jointly designing RF and RoFSO links. The optimization problem is solved over different numbers of RF and RoFSO links and under various weather conditions. Under favorable weather conditions, the replacement of 1 RF link by a RoFSO link is shown to increase the 50th percentile of UEs’ rates by 7 times. Secondly, the reliability of a CRAN with two-hop RoFSO/RoF fronthaul links is derived along with other performance metrics such as the average bit-error rate and the cumulative distribution function of UEs’ rates. For the given architecture, the Gaussian noise model of fiber nonlinearity is applied and an optimal OF average optical power is derived to minimize the outage probability. Using the optimal power, and under favorable weather conditions, the 50th percentile of user rate exceeds 1:5 Gbps. Finally, a CRAN with passive all-optical two-hop fronthaul links is considered where optical signals from the first RoFSO fronthaul hop are passively coupled into the RoF fronthaul link. The fronthaul outage probability is derived in the context of network planning to provide guidance on designing a set of system parameters. Those parameters include coverage area radius, density of RUs, RoFSO gain, RoFSO optical power and RoF length. / Thesis / Doctor of Philosophy (PhD) / The upcoming generation of wireless communications, termed fifth generation (5G), promises faster data rates and lower latency. In order to achieve this, more base stations (BSs) have to be deployed which increases the cost and complexity of the network. A solution to this challenge is to install simple BSs, i.e. radio units (RUs), that collect signals from users and forward them to a central office (CO) for joint processing which is referred to as a cloud radio access network (CRAN). The fronthaul network in a CRAN connects the RUs to the CO and it can be implemented using different kinds of links. While there are several fronthaul media (e.g., radio frequency (RF), free-space optical (FSO) links, copper lines, satellite communications, and optical fiber (OF)), optical links provide high data rates that are promising to achieve the 5G requirements. In this thesis, a novel architecture of a CRAN is considered in which analog optical links, namely FSO links and OF links, are used for fronthauling. Performance improvement in terms of rate and reliability is investigated and optimized through different design tools. In response to the challenges introduced by the proposed architecture, such as the nonlinearities of analog FSO and OF links, various design parameters are proposed in the optimization problems to tackle those challenges. Furthermore, a network planning framework is introduced to provide guidance and insights on designing the network.
7

Challenges of Implementing an iNET Transceiver for the Radio Access Network Standard (RANS)

Geoghegan, Mark 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada
8

5G Simulation Framework

Olsson, Joel, Asante, Junior January 2018 (has links)
From the first generation, 1G, to the fourth generation, 4G, the development and technological advancements in telecommunications network systems have been remarkable. Faster and better connections have opened up for new markets, ideas and possibilities, to that extent that there now is a demand that surpasses the supply. Despite all these advancements made in the mobile communications field most of the concept of how the technology works and its infrastructure has remained the same. This however, is about to change with the introduction of the fifth generation (5G) mobile communication. With the introduction of 5G much of the technology introduced will be different from that of previous generations. This change extends to include the entire infrastructure of the mobile communications system. With these major changes, many of the tools available today for telecommunications network evaluation do not really suffice to include the 5G network standard. For this reason, there is a need to develop a new kind of tool that will be able to include the changes brought by this new network standard. In this thesis a simulation framework adapted for the next generation telecommunication standard 5G is set to be developed. This framework should include many of the characteristics that set 5G aside from previous generations.
9

Analysis of Bandwidth and Latency Constraints on a Packetized Cloud Radio Access Network Fronthaul

Chaudhary, Jay Kant 20 May 2020 (has links)
Cloud radio access network (C-RAN) is a promising architecture for the next-generation RAN to meet the diverse and stringent requirements envisioned by fifth generation mobile communication systems (5G) and future generation mobile networks. C-RAN offers several advantages, such as reduced capital expenditure (CAPEX) and operational expenditure (OPEX), increased spectral efficiency (SE), higher capacity and improved cell-edge performance, and efficient hardware utilization through resource sharing and network function virtualization (NFV). However, these centralization gains come with the need for a fronthaul, which is the transport link connecting remote radio units (RRUs) to the base band unit (BBU) pool. In conventional C-RAN, legacy common public radio interface (CPRI) protocol is used on the fronthaul network to transport the raw, unprocessed baseband in-phase/quadrature-phase (I/Q) samples between the BBU and the RRUs, and it demands a huge fronthaul bandwidth, a strict low-latency, in the order of a few hundred microseconds, and a very high reliability. Hence, in order to relax the excessive fronthaul bandwidth and stringent low-latency requirements, as well as to enhance the flexibility of the fronthaul, it is utmost important to redesign the fronthaul, while still profiting from the acclaimed centralization benefits. Therefore, a flexibly centralized C-RAN with different functional splits has been introduced. In addition, 5G mobile fronthaul (often also termed as an evolved fronthaul ) is envisioned to be packet-based, utilizing the Ethernet as a transport technology. In this thesis, to circumvent the fronthaul bandwidth constraint, a packetized fronthaul considering an appropriate functional split such that the fronthaul data rate is coupled with actual user data rate, unlike the classical C-RAN where fronthaul data rate is always static and independent of the traffic load, is justifiably chosen. We adapt queuing and spatial traffic models to derive the mathematical expressions for statistical multiplexing gains that can be obtained from the randomness in the user traffic. Through this, we show that the required fronthaul bandwidth can be reduced significantly, depending on the overall traffic demand, correlation distance and outage probability. Furthermore, an iterative optimization algorithm is developed, showing the impacts of number of pilots on a bandwidth-constrained fronthaul. This algorithm achieves additional reduction in the required fronthaul bandwidth. Next, knowing the multiplexing gains and possible fronthaul bandwidth reduction, it is beneficial for the mobile network operators (MNOs) to deploy the optical transceiver (TRX) modules in C-RAN cost efficiently. For this, using the same framework, a cost model for fronthaul TRX cost optimization is presented. This is essential in C-RAN, because in a wavelength division multiplexing-passive optical network (WDM-PON) system, TRXs are generally deployed to serve at a peak load. But, because of variations in the traffic demands, owing to tidal effect, the fronthaul can be dimensioned requiring a lower capacity allowing a reasonable outage, thus giving rise to cost saving by deploying fewer TRXs, and energy saving by putting the unused TRXs in sleep mode. The second focus of the thesis is the fronthaul latency analysis, which is a critical performance metric, especially for ultra-reliable and low latency communication (URLLC). An analytical framework to calculate the latency in the uplink (UL) of C-RAN massive multiple-input multiple-output (MIMO) system is presented. For this, a continuous-time queuing model for the Ethernet switch in the fronthaul network, which aggregates the UL traffic from several massive MIMO-aided RRUs, is considered. The closed-form solutions for the moment generating function (MGF) of sojourn time, waiting time and queue length distributions are derived using Pollaczek–Khinchine formula for our M/HE/1 queuing model, and evaluated via numerical solutions. In addition, the packet loss rate – due to the inability of the packets to reach the destination in a certain time – is derived. Due to the slotted nature of the UL transmissions, the model is extended to a discrete-time queuing model. The impact of the packet arrival rate, average packet size, SE of users, and fronthaul capacity on the sojourn time, waiting time and queue length distributions are analyzed. While offloading more signal processing functionalities to the RRU reduces the required fronthaul bandwidth considerably, this increases the complexity at the RRU. Hence, considering the 5G New Radio (NR) flexible numerology and XRAN functional split with a detailed radio frequency (RF) chain at the RRU, the total RRU complexity is computed first, and later, a tradeoff between the required fronthaul bandwidth and RRU complexity is analyzed. We conclude that despite the numerous C-RAN benefits, the stringent fronthaul bandwidth and latency constraints must be carefully evaluated, and an optimal functional split is essential to meet diverse set of requirements imposed by new radio access technologies (RATs). / Ein cloud-basiertes Mobilfunkzugangsnetz (cloud radio access network, C-RAN) stellt eine vielversprechende Architektur für das RAN der nächsten Generation dar, um die vielfältigen und strengen Anforderungen der fünften (5G) und zukünftigen Generationen von Mobilfunknetzen zu erfüllen. C-RAN bietet mehrere Vorteile, wie z.B. reduzierte Investitions- (CAPEX) und Betriebskosten (OPEX), erhöhte spektrale Effizienz (SE), höhere Kapazität und verbesserte Leistung am Zellrand sowie effiziente Hardwareauslastung durch Ressourcenteilung und Virtualisierung von Netzwerkfunktionen (network function virtualization, NFV). Diese Zentralisierungsvorteile erfordern jedoch eine Transportverbindung (Fronthaul), die die Antenneneinheiten (remote radio units, RRUs) mit dem Pool an Basisbandeinheiten (basisband unit, BBU) verbindet. Im konventionellen C-RAN wird das bestehende CPRI-Protokoll (common public radio interface) für das Fronthaul-Netzwerk verwendet, um die rohen, unverarbeitet n Abtastwerte der In-Phaseund Quadraturkomponente (I/Q) des Basisbands zwischen der BBU und den RRUs zu transportieren. Dies erfordert eine enorme Fronthaul-Bandbreite, eine strenge niedrige Latenz in der Größenordnung von einigen hundert Mikrosekunden und eine sehr hohe Zuverlässigkeit. Um die extrem große Fronthaul-Bandbreite und die strengen Anforderungen an die geringe Latenz zu lockern und die Flexibilität des Fronthauls zu erhöhen, ist es daher äußerst wichtig, das Fronthaul neu zu gestalten und dabei trotzdem von den erwarteten Vorteilen der Zentralisierung zu profitieren. Daher wurde ein flexibel zentralisiertes CRAN mit unterschiedlichen Funktionsaufteilungen eingeführt. Außerdem ist das mobile 5G-Fronthaul (oft auch als evolved Fronthaul bezeichnet) als paketbasiert konzipiert und nutzt Ethernet als Transporttechnologie. Um die Bandbreitenbeschränkung zu erfüllen, wird in dieser Arbeit ein paketbasiertes Fronthaul unter Berücksichtigung einer geeigneten funktionalen Aufteilung so gewählt, dass die Fronthaul-Datenrate mit der tatsächlichen Nutzdatenrate gekoppelt wird, im Gegensatz zum klassischen C-RAN, bei dem die Fronthaul-Datenrate immer statisch und unabhängig von der Verkehrsbelastung ist. Wir passen Warteschlangen- und räumliche Verkehrsmodelle an, um mathematische Ausdrücke für statistische Multiplexing- Gewinne herzuleiten, die aus der Zufälligkeit im Benutzerverkehr gewonnen werden können. Hierdurch zeigen wir, dass die erforderliche Fronthaul-Bandbreite abhängig von der Gesamtverkehrsnachfrage, der Korrelationsdistanz und der Ausfallwahrscheinlichkeit deutlich reduziert werden kann. Darüber hinaus wird ein iterativer Optimierungsalgorithmus entwickelt, der die Auswirkungen der Anzahl der Piloten auf das bandbreitenbeschränkte Fronthaul zeigt. Dieser Algorithmus erreicht eine zusätzliche Reduktion der benötigte Fronthaul-Bandbreite. Mit dem Wissen über die Multiplexing-Gewinne und die mögliche Reduktion der Fronthaul-Bandbreite ist es für die Mobilfunkbetreiber (mobile network operators, MNOs) von Vorteil, die Module des optischen Sendeempfängers (transceiver, TRX) kostengünstig im C-RAN einzusetzen. Dazu wird unter Verwendung des gleichen Rahmenwerks ein Kostenmodell zur Fronthaul-TRX-Kostenoptimierung vorgestellt. Dies ist im C-RAN unerlässlich, da in einem WDM-PON-System (wavelength division multiplexing-passive optical network) die TRX im Allgemeinen bei Spitzenlast eingesetzt werden. Aufgrund der Schwankungen in den Verkehrsanforderungen (Gezeiteneffekt) kann das Fronthaul jedoch mit einer geringeren Kapazität dimensioniert werden, die einen vertretbaren Ausfall in Kauf nimmt, was zu Kosteneinsparungen durch den Einsatz von weniger TRXn und Energieeinsparungen durch den Einsatz der ungenutzten TRX im Schlafmodus führt. Der zweite Schwerpunkt der Arbeit ist die Fronthaul-Latenzanalyse, die eine kritische Leistungskennzahl liefert, insbesondere für die hochzuverlässige und niedriglatente Kommunikation (ultra-reliable low latency communications, URLLC). Ein analytisches Modell zur Berechnung der Latenz im Uplink (UL) des C-RAN mit massivem MIMO (multiple input multiple output) wird vorgestellt. Dazu wird ein Warteschlangen-Modell mit kontinuierlicher Zeit für den Ethernet-Switch im Fronthaul-Netzwerk betrachtet, das den UL-Verkehr von mehreren RRUs mit massivem MIMO aggregiert. Die geschlossenen Lösungen für die momenterzeugende Funktion (moment generating function, MGF) von Verweildauer-, Wartezeit- und Warteschlangenlängenverteilungen werden mit Hilfe der Pollaczek-Khinchin-Formel für unser M/HE/1-Warteschlangenmodell hergeleitet und mittels numerischer Verfahren ausgewertet. Darüber hinaus wird die Paketverlustrate derjenigen Pakete, die das Ziel nicht in einer bestimmten Zeit erreichen, hergeleitet. Aufgrund der Organisation der UL-Übertragungen in Zeitschlitzen wird das Modell zu einem Warteschlangenmodell mit diskreter Zeit erweitert. Der Einfluss der Paketankunftsrate, der durchschnittlichen Paketgröße, der SE der Benutzer und der Fronthaul-Kapazität auf die Verweildauer-, dieWartezeit- und dieWarteschlangenlängenverteilung wird analysiert. Während das Verlagern weiterer Signalverarbeitungsfunktionalitäten an die RRU die erforderliche Fronthaul-Bandbreite erheblich reduziert, erhöht sich dadurch im Gegenzug die Komplexität der RRU. Daher wird unter Berücksichtigung der flexiblen Numerologie von 5G New Radio (NR) und der XRAN-Funktionenaufteilung mit einer detaillierten RF-Kette (radio frequency) am RRU zunächst die gesamte RRU-Komplexität berechnet und später ein Kompromiss zwischen der erforderlichen Fronthaul-Bandbreite und der RRU-Komplexität untersucht. Wir kommen zu dem Schluss, dass trotz der zahlreichen Vorteile von C-RAN die strengen Bandbreiten- und Latenzbedingungen an das Fronthaul sorgfältig geprüft werden müssen und eine optimale funktionale Aufteilung unerlässlich ist, um die vielfältigen Anforderungen der neuen Funkzugangstechnologien (radio access technologies, RATs) zu erfüllen.
10

A self-optimised cloud radio access network for emerging 5G architectures

Khan, Muhammad January 2018 (has links)
Network densification has become a dominant theme for capacity enhancement in cellular networks. However, it increases the operational complexity and expenditure for mobile network operators. Consequently, the essential features of Self-Organising Networks (SON) are considered to ensure the economic viability of the emerging cellular networks. This thesis focuses on quantifying the benefits of self-organisation in Cloud Radio Access Network (C-RAN) by proposing a flexible, energy efficient, and capacity optimised system. The Base Band Unit (BBU) and Remote Radio Head (RRH) map is formulated as an optimisation problem. A self-optimised C-RAN (SOCRAN) is proposed which hosts Genetic Algorithm (GA) and Discrete-Particle-Swarm-Optimisation algorithm (DPSO), developed for optimisation. Computational results based on different network scenarios demonstrate that DPSO delivers excellent performances for the key performance indicators compared to GA. The percentage of blocked users is reduced from 10.523% to 0.409% in a medium sized network scenario and 5.394% to 0.56% in a vast network scenario. Furthermore, an efficient resource utilisation scheme is proposed based on the concept of Cell Differentiation and Integration (CDI). The two-stage CDI scheme semi-statically scales the number of BBUs and RRHs to serve an offered load and dynamically defines the optimum BBU-RRH mapping to avoid unbalanced network scenarios. Computational results demonstrate significant throughput improvement in a CDI-enabled C-RAN compared to a fixed C-RAN, i.e., an average throughput increase of 45.53% and an average blocked users decrease of 23.149% is experienced. A power model is proposed to estimate the overall power consumption of C-RAN. Approximately 16% power reduction is calculated in a CDI-enabled C-RAN when compared to a fixed C-RAN, both serving the same geographical area. Moreover, a Divide-and-Sort load balancing scheme is proposed and compared to the SOCRAN scheme. Results show excellent performances by the Divide-and-Sort algorithm in small networks when compared to SOCRAN and K-mean clustering algorithm.

Page generated in 0.0634 seconds