Spelling suggestions: "subject:"radio transmitter"" "subject:"sadio transmitter""
31 |
CMOS radio-frequency power amplifiers for multi-standard wireless communicationsKim, Hyungwook 23 May 2011 (has links)
The development of multi-standard wireless communication systems with low cost and high integration is continuously requested and accompanied by the explosive growth of the wireless communication market. Although CMOS technology can provide most building blocks in RF transceivers, the implementation of CMOS RF power amplifiers is still a challenging task. The objective of this research is to develop design techniques to implement fully-integrated multi-mode power amplifiers using CMOS technology.
In this dissertation, a load modulation technique with tunable matching networks and a pre-distortion technique in a multi-stage PA are proposed to support multi-communication standards with a single PA. A fully-integrated dual-mode GSM/EDGE PA was designed and implemented in a 0.18 um CMOS technology to achieve high output power for the GSM application and high linearity for the EDGE application. With the suggested power amplifier design techniques, fully-integrated PAs have been successfully demonstrated in GSM and EDGE applications.
In Addition to the proposed techniques, a body-switched cascode PA core is also proposed to utilize a single PA in multi-mode applications without hurting the performance. With the proposed techniques, a fully-integrated multi-mode PA has been implemented in a 0.18 um CMOS technology, and the power amplifier has been demonstrated successfully for GSM/EDGE/WCDMA applications.
In conclusion, the research in this dissertation provides CMOS RF power amplifier solutions for multiple standards in mobile wireless communications with low cost and high integration.
|
32 |
Design of integrated frequency synthesizers and clock-data recovery for 60 GHz wireless communicationsBarale, Francesco 26 August 2010 (has links)
In this dissertation, the development of the first 60 GHz-standard compatible fully integrated 4-channel phase-locked loop (PLL) frequency synthesizer has been presented. The frequency synthesizer features third-order single loop architecture with completely integrated passive loop filter that does not require any additional external passive component. Two possible realizations of fully integrated clock and data recovery (CDR) circuits suitable for 60 GHz-standard compliant base band signal processing have been presented for the first time as well. The two CDRs have been optimized for either high data rate (3.456 Gb/s) or very low power consumption (5 mW) and they both work with a single 1 V supply.
The frequency synthesizer is intended to generate a variable LO frequency in a fixed-IF heterodyne transceiver architecture. In such configuration the channel selection is implemented by changing the LO frequency by the required frequency step. This method avoids quadrature 50 GHz up/down-conversion thereby lowering the LO mixer design complexity and simplifying the LO distribution network. The measurement results show the PLL locking correctly on each of the four channels while consuming 60 mW from a 1 V power supply. The worst case phase noise is measured to be -80.1 dBc/Hz at 1 MHz offset from the highest frequency carrier (56.16 GHz). The output spectrum shows a reference spur attenuation of -32 dBc. The high data rate CDR features a maximum operating data rate in excess of 3.456 Gb/s while consuming 30 mW of power. The low power CDR consumes only 5 mW and operates at a maximum data rate of 1.728 Gb/s. Over a 1.5 m 60 GHz wireless link, both CDRs allow 95% reduction of the pulse shaping generated input peak-to-peak jitter from 450 ps down to 50 ps.
|
33 |
Multiple antenna downlink: feedback reduction, interference suppression and relay transmissionTang, Taiwen 28 August 2008 (has links)
Not available / text
|
34 |
A wide dynamic range high-q high-frequency bandpass filter with an automatic quality factor tuning schemeKumar, Ajay 09 January 2009 (has links)
An 80 MHz bandpass filter with a tunable quality factor of 16∼44 using an improved transconductor circuit is presented. A noise optimized biquad structure for high-Q, high- frequency bandpass filter is proposed. The quality factor of the filter is tuned using a new quality factor locked loop algorithm. It was shown that a second-order quality factor locked loop is necessary and sufficient to tune the quality factor of a bandpass filter with zero steady state error. The accuracy, mismatch, and sensitivty analysis of the new tuning scheme was performed and analyzed. Based on the proposed noise optimized filter structure and new quality factor tuning scheme, a biquad filter was designed and fabricated in 0.25 μm BiCMOS process. The measured results show that the biquad filter achieves a SNR of 45 dB at IMD of 40 dB. The P-1dB compression point and IIP3 of the filter are -10 dBm and -2.68 dBm, respectively. The proposed biquad filter and quality factor tuning scheme consumes 58mW and 13 mW of power at 3.3 V supply.
|
35 |
Operating voltage constraints and dynamic range in advanced silicon-germanium HBTs for high-frequency transceiversGrens, Curtis Morrow 04 May 2009 (has links)
This work investigates the fundamental device limits related to operational voltage constraints and linearity in state-of-the-art silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) in order to support the design of robust next-generation high-frequency transceivers. This objective requires a broad understanding of how much "usable" voltage exists compared to conventionally defined breakdown voltage specifications, so the role of avalanche-induced current-crowding (or "pinch-in") effects on transistor performance and reliability are carefully studied. Also, the effects of intermodulation distortion are examined at the transistor-level for new and better understanding of the limits and trade-offs associated with achieving enhanced dynamic range and linearity performance on existing and future SiGe HBT technology platforms. Based on these investigations, circuits designed for superior dynamic range performance are presented.
|
Page generated in 0.0884 seconds