• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Annual Report 2009 - Institute of Radiochemistry

22 September 2010 (has links) (PDF)
No description available.
2

Annual Report 2010 - Institute of Radiochemistry

23 August 2011 (has links) (PDF)
At the beginning of 2011, the former Forschungszentrum Dresden-Rossendorf (FZD) was fully integrated into the Helmholtz Association, as Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Therefore, the present Annual Report 2010 of the Institute of Radiochemistry (IRC) is published as the first HZDR-Report. The Institute of Radiochemistry is one of the six Research Institutes of this centre. IRC contributes to the research program “Nuclear Safety Research” in the “Research Field of Energy” and performs basic and applied research in radiochemistry and radioecology. Motivation and background of our research are environmental processes relevant for the installation of nuclear waste repositories, for remediation of uranium mining and milling sites, and for radioactive contaminations caused by nuclear accidents and fallout. Because of their high radiotoxicity and long half-life the actinides are of special interest.
3

Annual Report 2009 - Institute of Radiochemistry

Bernhard, G., Viehweger, K. January 2010 (has links)
No description available.
4

Annual Report 2011 - Institute of Radiochemistry

14 March 2012 (has links) (PDF)
The Institute of Radiochemistry (IRC) is one of the seven institutes of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The research activities are fully integrated into the “Nuclear Safety Research Program” of the Helmholtz Association and focused on the topic “Safety of Nuclear Waste Disposal”. The research objectives are to generate better process understanding and data for the long-term safety analysis of a nuclear waste disposal in the deep geological underground. A better knowledge about the dominating processes essential for radionuclide (actinide) mobilization and immobilization on the molecular level is needed for the assessment of the macroscopic processes which determine the transport and distribution of radioactivity in the environment. Special emphasis is put on the biological mediated transport of long-lived radionuclides in the geosphere and their interaction with different biosystems like biota and human organism for a better calculation of environmental and health risks. Advanced knowledge is needed for description of the processes dominating at the interfaces between geo- and bio-systems related to the distribution of long-lived radionuclides in various bio-systems along the food chain.
5

Annual Report 2010 - Institute of Radiochemistry

Bernhard, Gert, Foerstendorf, Harald, Richter, Anke, Viehweger, Katrin January 2011 (has links)
At the beginning of 2011, the former Forschungszentrum Dresden-Rossendorf (FZD) was fully integrated into the Helmholtz Association, as Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Therefore, the present Annual Report 2010 of the Institute of Radiochemistry (IRC) is published as the first HZDR-Report. The Institute of Radiochemistry is one of the six Research Institutes of this centre. IRC contributes to the research program “Nuclear Safety Research” in the “Research Field of Energy” and performs basic and applied research in radiochemistry and radioecology. Motivation and background of our research are environmental processes relevant for the installation of nuclear waste repositories, for remediation of uranium mining and milling sites, and for radioactive contaminations caused by nuclear accidents and fallout. Because of their high radiotoxicity and long half-life the actinides are of special interest.
6

Annual Report 2011 - Institute of Radiochemistry

Bernhard, G., Richter, A. January 2012 (has links)
The Institute of Radiochemistry (IRC) is one of the seven institutes of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The research activities are fully integrated into the “Nuclear Safety Research Program” of the Helmholtz Association and focused on the topic “Safety of Nuclear Waste Disposal”. The research objectives are to generate better process understanding and data for the long-term safety analysis of a nuclear waste disposal in the deep geological underground. A better knowledge about the dominating processes essential for radionuclide (actinide) mobilization and immobilization on the molecular level is needed for the assessment of the macroscopic processes which determine the transport and distribution of radioactivity in the environment. Special emphasis is put on the biological mediated transport of long-lived radionuclides in the geosphere and their interaction with different biosystems like biota and human organism for a better calculation of environmental and health risks. Advanced knowledge is needed for description of the processes dominating at the interfaces between geo- and bio-systems related to the distribution of long-lived radionuclides in various bio-systems along the food chain.
7

Der Einfluss von Strukturen und Reaktionen an der Wasser/Mineral-Grenzfläche auf die Radionuklidmobilität

Schmidt, Moritz 22 January 2018 (has links)
Die Langzeitsicherheitsanalyse für ein Endlager für nukleare Abfälle bedarf einer eingehenden Beschreibung der Mobilität von Radionukliden im Nah- und Fernfeld des Endlagers. Da extrem lange Zeiträume von bis zu einer Million Jahren abgebildet werden müssen, muss diese Beschreibung auf einem molekularen Prozessverständnis beruhen. Nur dann ist eine unbegrenzte zeitliche Extrapolation zulässig. Die wichtigsten Rückhalteprozesse finden an der Wasser/Mineralgrenzfläche statt, wobei in einem realen Endlager sehr viele primäre und sekundäre Mineralphasen vorhanden sind, mit denen die Radionuklide wechselwirken können. Zudem stehen eine Vielzahl verschiedener Reaktionsmechanismen zur Verfügung – innersphärische oder außersphärische Sorption, struktureller Einbau, Oberflächenfällung etc. – die sich hinsichtlich ihrer Rückhaltefähigkeit deutlich unterscheiden. Somit muss auf hochsensitive Methoden zurückgegriffen werden, die in der Lage sind, selektiv Informationen über die relevanten Radionuklide innerhalb der Grenzschicht zu liefern. Die in dieser Arbeit hauptsächlich verwendeten Methoden, die zeitaufgelöste Laser-induzierte Fluoreszenzspektroskopie (TRLFS), und die Oberflächenröntgenbeugungsmethoden crystal truncation rod (CTR) Messung und resonant anomalous X-ray reflectivity (RAXR), haben sich als effiziente Werkzeuge zur Ermittlung struktureller und Speziationsdaten erwiesen. So konnte im Rahmen dieser Arbeit die Wechselwirkung der Radionuklide U, Pu, Am und Cm mit verschiedenen Mineralphasen aufgeklärt, sowie die Abhängigkeit dieser Reaktionen von der Lösungszusammensetzung beschrieben werden.:1 Einleitung 9 1.1 Zeitaufgelöste laser-induzierte Fluoreszenzspektroskopie 12 1.2 Oberflächenröntgenbeugung 18 2 Spektroskopische Charakterisierung von Einbauprozessen 21 2.1 Biswas S, Steudtner R, Schmidt M, McKenna C, Vintró LL 25 Twamley B, et al. An investigation of the interactions of Eu3+ and Am3+ with uranyl minerals: implications for the storage of spent nuclear fuel. Dalton Transactions. 2016; 45(15):6383-93. 2.2 Schmidt M, Heck S, Bosbach D, Ganschow S, Walther 36 C, Stumpf T. Characterization of powellite-based solid solutions by site-selective time resolved laser fluorescence spectroscopy. Dalton Transactions. 2013;42(23):8387 - 93. 2.3 Hellebrandt SE, Hofmann S, Jordan N, Barkleit A, Schmidt M. 43 Incorporation of Eu(III) into Calcite under recrystallization conditions. Scientific Reports. 2016;6:33137. 2.4 Johnstone EV, Hofmann S, Cherkouk A, Schmidt M. 53 Study of the Interaction of Eu3+ with Microbiologically Induced Calcium Carbonate Precipitates using TRLFS. Environmental Science & Technology. 2016;50(22):12411-20. 3 Oberflächeninduzierte Kondensationsreaktionen 63 3.1 Lee SS, Schmidt M, Fister TT, Nagy KL, Sturchio NC, Fenter P. 65 Structural Characterization of Aluminum (Oxy)hydroxide Films at the Muscovite (001)–Water Interface. Langmuir. 2016; 32(2):477-86. 3.2 Hellebrandt S, Lee SS, Knope KE, Lussier AJ, Stubbs JE, Eng 75 PJ, et al. Cooperative effects of adsorption, reduction, and polymerization observed for hexavalent actinides on the muscovitebasal plane. Langmuir. 2016; 32(41):10473-82.6 3.3 Schmidt M, Lee SS, Wilson RE, Knope KE, Bellucci F, Eng 85 PJ, et al. Surface-Mediated Formation of Pu(IV) Nanoparticles at the Muscovite-Electrolyte Interface. Environmental Science & Technology. 2013;47(24):14178-84. 4 Elektrolyteffekte auf Oberflächenprozesse 92 4.1 Lee SS, Schmidt M, Laanait N, Sturchio NC, Fenter P. 94 Investigation of Structure, Adsorption Free Energy, and Overcharging Behavior of Trivalent Yttrium Adsorbed at the Muscovite (001)–Water Interface. The Journal of Physical Chemistry C. 2013;117(45):23738-49. 4.2 Schmidt M, Hellebrandt S, Knope KE, Lee SS, Stubbs JE, 106 Eng PJ, et al. Effects of the Background Electrolyte on Th(IV) Sorption to Muscovite Mica. Geochimica et Cosmochimica Acta. 2015;165:280-93. 4.3 Hofmann S, Voïtchovsky K, Schmidt M, Stumpf T. Trace 120 concentration – Huge impact: Nitrate in the calcite/Eu(III) system. Geochimica et Cosmochimica Acta. 2014;125:528-38. 4.4 Hofmann S, Voïtchovsky K, Spijker P, Schmidt M, Stumpf 131 T. Visualising the molecular alteration of the calcite (104)–water interface by sodium nitrate. Scientific Reports. 2016; 6:21576. 5 Schlussfolgerungen 142 Literatur 146 / The safety assessment of a nuclear waste disposal site requires the accurate description of the radionuclides’ mobility in the near and far field of the site. This description must rely on molecular level understanding of the occurring processes to allow extrapolation for time frames of up to one million years. The most important retention mechanisms take place at the water/mineral interface. A disposal site will contain a large number of mineral phases, both as primary and secondary minerals. Moreover, a large number of potential reaction pathways is conceivable, and must be investigated: inner and outer sphere sorption, structural incorporation, surface precipitation, etc. As these mechanisms will differ significantly in their retention potential, it is crucial to be able to differentiate between them. Hence, the need arises for analytical techniques capable of providing selective information about radionuclides at the water/mineral interface. This work employs time-resolved laser-induced fluorescence spectroscopy (TRLFS), as well as the surface X-ray diffraction techniques crystal truncation rod (CTR) measurements and resonant anomalous X-ray reflectivity (RAXR) as efficient tools to obtain both structural and speciation data from these systems. Following this approach, the interaction of the radionuclides U, Pu, Am, and Cm with various mineral phases could be elucidated, while also characterizing the dependence of these reactions on the composition of the aqueous solution.:1 Einleitung 9 1.1 Zeitaufgelöste laser-induzierte Fluoreszenzspektroskopie 12 1.2 Oberflächenröntgenbeugung 18 2 Spektroskopische Charakterisierung von Einbauprozessen 21 2.1 Biswas S, Steudtner R, Schmidt M, McKenna C, Vintró LL 25 Twamley B, et al. An investigation of the interactions of Eu3+ and Am3+ with uranyl minerals: implications for the storage of spent nuclear fuel. Dalton Transactions. 2016; 45(15):6383-93. 2.2 Schmidt M, Heck S, Bosbach D, Ganschow S, Walther 36 C, Stumpf T. Characterization of powellite-based solid solutions by site-selective time resolved laser fluorescence spectroscopy. Dalton Transactions. 2013;42(23):8387 - 93. 2.3 Hellebrandt SE, Hofmann S, Jordan N, Barkleit A, Schmidt M. 43 Incorporation of Eu(III) into Calcite under recrystallization conditions. Scientific Reports. 2016;6:33137. 2.4 Johnstone EV, Hofmann S, Cherkouk A, Schmidt M. 53 Study of the Interaction of Eu3+ with Microbiologically Induced Calcium Carbonate Precipitates using TRLFS. Environmental Science & Technology. 2016;50(22):12411-20. 3 Oberflächeninduzierte Kondensationsreaktionen 63 3.1 Lee SS, Schmidt M, Fister TT, Nagy KL, Sturchio NC, Fenter P. 65 Structural Characterization of Aluminum (Oxy)hydroxide Films at the Muscovite (001)–Water Interface. Langmuir. 2016; 32(2):477-86. 3.2 Hellebrandt S, Lee SS, Knope KE, Lussier AJ, Stubbs JE, Eng 75 PJ, et al. Cooperative effects of adsorption, reduction, and polymerization observed for hexavalent actinides on the muscovitebasal plane. Langmuir. 2016; 32(41):10473-82.6 3.3 Schmidt M, Lee SS, Wilson RE, Knope KE, Bellucci F, Eng 85 PJ, et al. Surface-Mediated Formation of Pu(IV) Nanoparticles at the Muscovite-Electrolyte Interface. Environmental Science & Technology. 2013;47(24):14178-84. 4 Elektrolyteffekte auf Oberflächenprozesse 92 4.1 Lee SS, Schmidt M, Laanait N, Sturchio NC, Fenter P. 94 Investigation of Structure, Adsorption Free Energy, and Overcharging Behavior of Trivalent Yttrium Adsorbed at the Muscovite (001)–Water Interface. The Journal of Physical Chemistry C. 2013;117(45):23738-49. 4.2 Schmidt M, Hellebrandt S, Knope KE, Lee SS, Stubbs JE, 106 Eng PJ, et al. Effects of the Background Electrolyte on Th(IV) Sorption to Muscovite Mica. Geochimica et Cosmochimica Acta. 2015;165:280-93. 4.3 Hofmann S, Voïtchovsky K, Schmidt M, Stumpf T. Trace 120 concentration – Huge impact: Nitrate in the calcite/Eu(III) system. Geochimica et Cosmochimica Acta. 2014;125:528-38. 4.4 Hofmann S, Voïtchovsky K, Spijker P, Schmidt M, Stumpf 131 T. Visualising the molecular alteration of the calcite (104)–water interface by sodium nitrate. Scientific Reports. 2016; 6:21576. 5 Schlussfolgerungen 142 Literatur 146

Page generated in 0.0479 seconds