• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Skyfall över Västerås : en konsekvensstudie / Heavy rainfall events in Västerås : a study of its consequences

Wallinder, Sol January 2015 (has links)
Skyfall kan leda till stora konsekvenser för samhället, framförallt i en stad då den urbana miljön är känslig för extrema händelser. Västerås stad har tidigare drabbats av skyfall där följderna har varit kostsamma. Den senaste forskningen pekar på att intensiva regnhändelser kommer bli allt mer vanligt förekommande, därför är det intressant att undersöka vilka konsekvenser dessa regn kan leda till. En analys har gjorts med utgångspunkt från SMHI:s lågpunktskartering över Västerås. Utifrån denna kartering undersöktes vilka förorenade områden, bostadsområden, exploateringsområden, infrastruktur, vårdcentraler, skolor, nätstationer och prioriterade pumpar som ligger i lågpunktsområden. Denna jämförelse har gjorts i ArcGIS. Där konstaterades att många viktiga objekt ligger i låga områden och då riskerar att översvämmas. Det gäller främst sjukhusområdet, mindre bostadsområden, cykel-underfarter och nätstationer. Resultaten från jämförelsen med lågpunktskarteringen låg därefter som grund för val av vidare studie där en fördjupad konsekvensstudie har gjorts över sjukhusområdet då detta är en samhällsviktig funktion som tidigare har översvämmats vid skyfall. En hydraulisk modell har byggts upp i programmet MIKE 21 Flow Model där ett regn med återkomsttiden 100 år har simulerats och dess konsekvenser över sjukhusets avrinningsområde har undersökts. Simuleringen visar att stora ytor vid främst sjukhusområdet och i bostadsområden med tät bebyggelse översvämmas. Stora vattendjup ansamlas bland annat vid sjukhusets akutingång och längs E 18 vid Korsängsmotet och Folkparksmotet. Känslighetsanalyser har även utförts i MIKE 21 Flow Model för att undersöka bland annat hur olika stora regn påverkar resultaten samt hur känslig resultaten är för val av Mannings tal (M). Resultaten visar att intensivare regn medför framförallt en större översvämmad yta och att ett konstant värde på M = 40 hade varit en rimlig förenkling för detta område. En kontroll har utförts där skyfallet som föll över Västerås 8 juli 2012 har simulerats i MIKE 21 Flow Model. Resultaten från de hydrauliska simuleringarna har även jämförts med SMHI:s lågpunktskartering där det konstaterades att många lågpunkter inte översvämmas, men samtidigt att flera områden som inte är lågpunktsområden översvämmas vid simulerade skyfall. / Heavy rainfall can lead to large consequences for society, especially in a city since the urban environment is sensitive to extreme events. Västerås has earlier suffered heavy rains and according to the latest research, more intense future rainfall is to be expected. It’s therefore interesting to examine the possible implications of these rains. SMHI has produced a map of low areas in the city of Västerås. Based on this mapping, this study evaluated the occurrence of contaminated areas, residential areas, development areas, infrastructure, health centers, schools, power stations and prioritized pumps in low areas. This comparison has been made in ArcGIS. It could be established that many important objects are located in low areas and therefore have a risk of being flooded by heavy rain showers. This primarily concerns the hospital, smaller residential areas, underpasses and power stations. The results from the comparison with low areas were used as background information when the hospital was chosen for further studies. The hospital is an important public function that has previously been flooded by heavy rain showers. By using the program MIKE 21 Flow Model, a hydraulic model has been set up where a rain with a return period of 100 years has been simulated and its consequences on the catchment area has been explored. The simulation shows that large flooded areas will occur around the hospital and in residential areas. A large water depth is predicted to occur at the hospital's emergency entrance and along E 18 at Korsängsmotet and Folkparksmotet. Sensitivity analyses were also performed in the MIKE 21 Flow Model to investigate how different kinds of rain affect the results, and how sensitive the results are to the choice of Manning's M values. From the results it can be seen that intense rainfall means primarily a greater flooded surface and that a constant value of M = 40 had been a reasonable simplification for the simulated area. A simulation has been performed in MIKE 21 Flow Model with the heavy rain shower that fell over Västerås July 8, 2012. A comparison has also been made between the results from the hydraulic simulations and the mapping of low areas made by SMHI. It was found that many of the lower areas were not flooded, but also that several areas that were not found as low areas were flooded in simulated rainfalls.
2

Atmospheric corrosion and runoff processes on copper and zinc as roofing materials

He, Wenle January 2002 (has links)
An extensive investigation with parallel field andlaboratory exposures has been conducted to elucidateatmospheric corrosion and metal runoff processes on copper andzinc used for roofing applications. Detailed studies have beenperformed to disclose the effect of various parameters on therunoff rate including: surface inclination and orientation,natural patination (age), patina composition, rain duration andvolume, rain pH, and length of dry periods inbetween rainevents. Annual and average corrosion rates and runoff rateshave been determined consecutively during urban field exposuresin Stockholm on naturally patinated copper and zinc of varyingage and patina composition. The corrosion rate was found todecrease with time, amounting to 6.7 g Cu/(m2.y) and 5.0 gZn/(m2.y) after 48 weeks of exposure, whereas the runoff ratewas relatively constant with time on a yearly basis, being 1.3g/(m2.y) and 3.1 g/(m2.y) for copper and zinc, respectively.The annual runoff rate was found to be significantly lower thanthe corresponding corrosion rate for both copper and zinc.Somewhat higher runoff rates of copper were determined fromnaturally green-patinated copper (&gt;40 years old, 2.0g/(m2.y)) compared to brown-patinated copper (1 year old). Themain reasons are specific environmental conditions combinedwith characteristics of the patina layer, which increase themagnitude of dissolved species flushed from the surface duringthe first flush volume of a rain event. No intrinsic effect ofpanel age on the runoff rate was seen for naturally patinatedzinc. However, differences in prevailing environmentalconditions during the initial exposure period and, hence,differences in formation rate and surface coverage of thecorrosion patina, resulted in variations in runoff rate. Thisinitial difference remained also during prolonged exposureperiods and was referred to as a memory effect. Model roof investigations and laboratory studies showedsurface orientation and inclination to have a detrimentaleffect on the runoff rate with high runoff rates from surfacesof low inclination from horizon and surfaces exposed towardsthe wind direction. Based on fieldexposures and literature data, a correlationwas established between the runoff rate and the prevailingSO2-concentration. The runoff rate increases with increasingSO2 level for exposure sites of similar annual precipitationquantities (500-1000 mm/y). A rain device, using artificialrain, was shown to successfully simulate outdoor rain events ofvarying intensity and pH and result in realistic runoff ratesof both copper and zinc. The device was used to monitor changesin metal concentration and quantity of runoff water duringindividual rain events. High metal concentrations are found inthe initial rain volume flushing the surface (first flush),which decreased to rather constant metal concentrations duringthe subsequent rain volume (steady-state). The magnitude offirst flush depends primarily on environmental conditions priorto a rain event and the characteristics of the corrosionpatina. The metal concentration in runoff water increases withrain acidity, decreases with rain intensity and increases withlength of the dry period preceding a rain event. A comparison between instantaneous corrosion rates,monitored by electrochemical impedance spectroscopy using a2-electrode set-up, and runoff rates during a continuous rainevent was performed for naturally patinated copper panels.Corrosion rates were found to be approximately 10 (brownishpatina) and 25 times (greenish patina) lower than correspondinginstantaneous runoff rates. A schematic description of the first flush and steady-stateregion of the runoff process was established. The magnitude ofthe concentration during first flush is primarily affected byprevailing environmental conditions prior to a rain event,while rain pH and intensity primarily affect the concentrationduring steady-state. <b>Key words:</b>atmospheric corrosion, corrosion rate, runoffrate, copper, zinc, field study, laboratory study, roof, firstflush, rain quantity, rain intensity, rain pH, dry and wetdeposition, corrosion and runoff process.
3

Atmospheric corrosion and runoff processes on copper and zinc as roofing materials

He, Wenle January 2002 (has links)
<p>An extensive investigation with parallel field andlaboratory exposures has been conducted to elucidateatmospheric corrosion and metal runoff processes on copper andzinc used for roofing applications. Detailed studies have beenperformed to disclose the effect of various parameters on therunoff rate including: surface inclination and orientation,natural patination (age), patina composition, rain duration andvolume, rain pH, and length of dry periods inbetween rainevents. Annual and average corrosion rates and runoff rateshave been determined consecutively during urban field exposuresin Stockholm on naturally patinated copper and zinc of varyingage and patina composition. The corrosion rate was found todecrease with time, amounting to 6.7 g Cu/(m2.y) and 5.0 gZn/(m2.y) after 48 weeks of exposure, whereas the runoff ratewas relatively constant with time on a yearly basis, being 1.3g/(m2.y) and 3.1 g/(m2.y) for copper and zinc, respectively.The annual runoff rate was found to be significantly lower thanthe corresponding corrosion rate for both copper and zinc.Somewhat higher runoff rates of copper were determined fromnaturally green-patinated copper (>40 years old, 2.0g/(m2.y)) compared to brown-patinated copper (1 year old). Themain reasons are specific environmental conditions combinedwith characteristics of the patina layer, which increase themagnitude of dissolved species flushed from the surface duringthe first flush volume of a rain event. No intrinsic effect ofpanel age on the runoff rate was seen for naturally patinatedzinc. However, differences in prevailing environmentalconditions during the initial exposure period and, hence,differences in formation rate and surface coverage of thecorrosion patina, resulted in variations in runoff rate. Thisinitial difference remained also during prolonged exposureperiods and was referred to as a memory effect.</p><p>Model roof investigations and laboratory studies showedsurface orientation and inclination to have a detrimentaleffect on the runoff rate with high runoff rates from surfacesof low inclination from horizon and surfaces exposed towardsthe wind direction.</p><p>Based on fieldexposures and literature data, a correlationwas established between the runoff rate and the prevailingSO2-concentration. The runoff rate increases with increasingSO2 level for exposure sites of similar annual precipitationquantities (500-1000 mm/y). A rain device, using artificialrain, was shown to successfully simulate outdoor rain events ofvarying intensity and pH and result in realistic runoff ratesof both copper and zinc. The device was used to monitor changesin metal concentration and quantity of runoff water duringindividual rain events. High metal concentrations are found inthe initial rain volume flushing the surface (first flush),which decreased to rather constant metal concentrations duringthe subsequent rain volume (steady-state). The magnitude offirst flush depends primarily on environmental conditions priorto a rain event and the characteristics of the corrosionpatina. The metal concentration in runoff water increases withrain acidity, decreases with rain intensity and increases withlength of the dry period preceding a rain event.</p><p>A comparison between instantaneous corrosion rates,monitored by electrochemical impedance spectroscopy using a2-electrode set-up, and runoff rates during a continuous rainevent was performed for naturally patinated copper panels.Corrosion rates were found to be approximately 10 (brownishpatina) and 25 times (greenish patina) lower than correspondinginstantaneous runoff rates.</p><p>A schematic description of the first flush and steady-stateregion of the runoff process was established. The magnitude ofthe concentration during first flush is primarily affected byprevailing environmental conditions prior to a rain event,while rain pH and intensity primarily affect the concentrationduring steady-state.</p><p><b>Key words:</b>atmospheric corrosion, corrosion rate, runoffrate, copper, zinc, field study, laboratory study, roof, firstflush, rain quantity, rain intensity, rain pH, dry and wetdeposition, corrosion and runoff process.</p>
4

Estudo das chuvas intensas nas Zonas Rural e Urbana de João Pessoa. / Study of the intense rains in the Rural and Urban Zones of João Pessoa. / Étude de l'équation des pluis intenses pour les Zones Rurales et Urbanes de João Pessoa.

SOUZA, José Aquino de. 30 September 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-09-30T12:52:19Z No. of bitstreams: 1 JOSÉ AQUINO DE SOUZA - DISSERTAÇÃO PPGECA 1972..pdf: 17642523 bytes, checksum: 4c732b1dcfdf5e25a364d85c881b123d (MD5) / Made available in DSpace on 2018-09-30T12:52:19Z (GMT). No. of bitstreams: 1 JOSÉ AQUINO DE SOUZA - DISSERTAÇÃO PPGECA 1972..pdf: 17642523 bytes, checksum: 4c732b1dcfdf5e25a364d85c881b123d (MD5) Previous issue date: 1972-09-25 / Este trabalho visa a determinação da equição de "intensidade-duração-frequência", para um intervalo de recorrência máximo de 100 anos, valida para as zonas rural e urbana da cidade de João-Pessoa - Paraíba. Baseia-se em dados pluviográficos de 13 anos de observações e dá um tratamento estatístico para obtenção dos resulta dos. Apresenta ainda ábaco, gráficos e tabelas baseados na equação encontrada. A equaçuo obtida facilita solução de problemas relativos a Engenharia Civil, sobretudo a dimensionamento de galerias pluviais. / This paper deals with the determination of the "intensity-duration-frequency" curves for a 100 - years maximum recurrence interval. The validety of the proposed equation is limitedto the urban and agricultural areas of the capital of the Paraíba State - João Pessoa. The analysis is based, on a statistical treatement of pluviographical observations over a period of 13 years. The proposed equation is presented in abac, graphical as well as tabulated form. The results of the investigation permit the determination of the Urban Stormwater Runoff, which serves as basic data for the project of the urban drainage facility. / Le but de ce travail est la détermination de l'équation"intensité-durie-fréquence", pour un intervalle de récurrence maximum de 100 ans. La validité de l'équation proposée est limitée aux aires urbaines et agricoles de la municipalitéde João Pessoa-Paraíba. L'analyse repose sur le traitement statistique des obser bâtions pluviométriques pendant un période de 13 ans.L'équation proposée est présentée sous formes d'abaques, de graphiques, et de tableau numériques. L'équation obtenue facilite la solution de problèmes relatifs au Génie Civil, en particulier celui du dimensionnementdes galeries pluviales.
5

The influence of spatial variations in rain intensity for cloudburst modelling : a case study of the Gävle cloudburst / Effekten av spatiala variationer i regnintensitet inom skyfallsmodellering : en fallstudie av Gävleskyfallet

Jeppsson Stahl, Fanny January 2022 (has links)
With an intensification of heavy rain events in a changing climate and a rapid urbanization the risk for pluvial flooding is increasing in our societies. Pluvial flooding, which is formed when the rainfall rate exceeds the infiltration or drainage rate, can occur rapidly and cause great damages, large economic losses and possibly risk human lives. This kind of flooding is difficult to predict since it is caused by short-term and often local processes, but preventive measures and more robust infrastructure developed over the last decades have decreased the risk of the most severe damages. One way to prevent damage is to map risk areas and take measures by performing a cloudburst modelling, which can be done as a 2D hydraulic modelling. Common practice in cloudburst modelling today is to use a uniform design storm, often the Chicago Design Storm (CDS), with the same hyetograph applied evenly over the whole model area. Even though rain is not spatially uniform this assumption might be valid for more stratiform frontal rain. Intense rain events however have a higher spatial variation in rain intensity, and an assumption like this might significantly affect the results. This study aimed to investigate the effect of the spatial variation in rain intensity on the modelled hydraulic response from an intense rain event. It was performed through a case study of the cloudburst in Gävle, Sweden, in August 2021. A 2D hydraulic model of the city was prepared in the software MIKE 21 Flow Model FM and the cloudburst event was simulated with a spatially varied rainfall input, based on radar data from the event with a 2x2 km resolution, and with spatially uniform rainfall input both with the temporal variation in rain intensity from the event and with a Chicago Design Storm, all with the same total volume. The scenarios were evaluated in terms of proportion of the model area being flooded, the average maximum flooding depth and by mapping the difference in flooding depth over the whole area. The results showed that the spatial variation of rainfall input had a significant effect on the hydraulic response in the city and that assuming a uniform rainfall might lead to an underestimation of the flooding depths in parts of the model area compared to a varied one. The average flooding depth was only a few percent higher for the spatially varied rain compared to the uniform rain with a similar time variation, but in large central areas of the city the model with the uniform rain underestimated the maximum flooding depth by 5-35%. The uniform CDS rain was seen to both over- and underestimate the flooding depth, but in the central and flooded parts of the city underestimation dominated. This points out a risk of using uniform design storms in cloudburst modelling, since a spatially varied rain of the same volume could give more severe effects than the simulated response and that using a uniform design storm potentially introduces an uncertainty in the modelled results that could be important to point out and further quantify. / Med en intensifiering av häftiga regnväder i ett förändrat klimat och en allt snabbare urbanisering ökar risken för pluviala översvämningar i våra samhällen. Pluviala översvämningar, som skapas av att regnintensiteten är högre än infiltrations- eller dräneringshastigheten, kan uppstå plötsligt och orsaka stora skador, ekonomiska förluster och även i värsta fall riskera människoliv. Denna typ av översvämning är svår att förutse eftersom den orsakas av snabba och ofta lokala processer, men förebyggande åtgärder och mer robust infrastruktur som har utvecklats de senaste decennierna har minskat risken för de allvarligaste skadorna. Ett sätt att förebygga skador är att kartera riskområden genom skyfallsmodellering, till exempel med en tvådimensionell hydraulisk modell. Praxis idag är att använda spatialt uniforma typregn vid skyfallsmodellering, där samma hyetograf appliceras jämnt över hela modellområdet. Detta antagande kan ge giltiga resultat för mer stratiforma frontregn, men intensiva regn, skyfall, har generellt sett en hög spatial variation i intensiteten vilket gör att antagandet skulle kunna påverka resultatet signifikant. Denna studie syftade till att undersöka effekten av den spatiala variationen i regnintensitet på den simulerade hydrauliska responsen från ett intensivt regn och den utfördes som en fallstudie av skyfallet i Gävle 17-18 augusti 2021. En 2D hydraulisk modell av Gävle förbereddes i programmet MIKE 21 Flow Model FM och simuleringar utfördes med en spatialt varierad regnindata, baserad på radardata från tillfället med en 2x2 km upplösning, och med spatialt uniforma regnindata både med den verkliga tidsvariationen och med en Chicago Design Storm (CDS), alla med samma totala volym. Skillnaden mellan scenarierna utvärderades genom att jämföra andel översvämmat modellområde, medel av maximala översvämningsdjupet och en kartering av skillnaden i översvämningsdjup över hela modellområdet. Resultaten visade att den spatiala variationen i regnindatan hade en signifikant effekt på den simulerade hydrauliska responsen i staden och att antagande om uniform regnintensitet kan leda till en underskattning av översvämningsdjupen i modellområdet jämfört med ett varierat regn. Medelvärdet av översvämningsdjupet var endast några procent högre  för det spatialt varierade regnet, men i stora centrala områden underskattade modellen med det uniforma regnet det maximala översvämningsdjupet med 5-35 %. Det uniforma CDS-regnet både under- och överskattade översvämningsdjupet, men i centrala och översvämmade områden var det större delar som underskattades. Detta visar på en risk med att använda uniforma typregn i skyfallsmodellering, då ett spatialt varierat regn med samma volym skulle kunna ge betydligt allvarligare effekter än de som modellen har visat och att användandet av uniforma testregn potentiellt inför en osäkerhet i resultaten som är viktig att poängtera och även att vidare undersöka och kvantifiera.
6

INTEGRATING CONNECTED VEHICLE DATA FOR OPERATIONAL DECISION MAKING

Rahul Suryakant Sakhare (9320111) 26 April 2023 (has links)
<p>  </p> <p>Advancements in technology have propelled the availability of enriched and more frequent information about traffic conditions as well as the external factors that impact traffic such as weather, emergency response etc. Most newer vehicles are equipped with sensors that transmit their data back to the original equipment manufacturer (OEM) at near real-time fidelity. A growing number of such connected vehicles (CV) and the advent of third-party data collectors from various OEMs have made big data for traffic commercially available for use. Agencies maintaining and managing surface transportation are presented with opportunities to leverage such big data for efficiency gains. The focus of this dissertation is enhancing the use of CV data and applications derived from fusing it with other datasets to extract meaningful information that will aid agencies in data driven efficient decision making to improve network wide mobility and safety performance.   </p> <p>One of the primary concerns of CV data for agencies is data sampling, particularly during low-volume overnight hours. An evaluation of over 3 billion CV records in May 2022 in Indiana has shown an overall CV penetration rate of 6.3% on interstates and 5.3% on non-interstate roadways. Fusion of CV traffic speeds with precipitation intensity from NOAA’s High-Resolution Rapid-Refresh (HRRR) data over 42 unique rainy days has shown reduction in the average traffic speed by approximately 8.4% during conditions classified as very heavy rain compared to no rain. </p> <p>Both aggregate analysis and disaggregate analysis performed during this study enables agencies and automobile manufacturers to effectively answer the often-asked question of what rain intensity it takes to begin impacting traffic speeds. Proactive measures such as providing advance warnings that improve the situational awareness of motorists and enhance roadway safety should be considered during very heavy rain periods, wind events, and low daylight conditions.</p> <p>Scalable methodologies that can be used to systematically analyze hard braking and speed data were also developed. This study demonstrated both quantitatively and qualitatively how CV data provides an opportunity for near real-time assessment of work zone operations using metrics such as congestion, location-based speed profiles and hard braking. The availability of data across different states and ease of scalability makes the methodology implementable on a state or national basis for tracking any highway work zone with little to no infrastructure investment. These techniques can provide a nationwide opportunity in assessing the current guidelines and giving feedback in updating the design procedures to improve the consistency and safety of construction work zones on a national level.  </p> <p>CV data was also used to evaluate the impact of queue warning trucks sending digital alerts. Hard-braking events were found to decrease by approximately 80% when queue warning trucks were used to alert motorists of impending queues analyzed from 370 hours of queueing with queue trucks present and 58 hours of queueing without the queue trucks present, thus improving work zone safety. </p> <p>Emerging opportunities to identify and measure traffic shock waves and their forming or recovery speed anywhere across a roadway network are provided due to the ubiquity of the CV data providers. A methodology for identifying different shock waves was presented, and among the various case studies found typical backward forming shock wave speeds ranged from 1.75 to 11.76 mph whereas the backward recovery shock wave speeds were between 5.78 to 16.54 mph. The significance of this is illustrated with a case study of  a secondary crash that suggested  accelerating the clearance by 9 minutes could have prevented the secondary crash incident occurring at the back of the queue. Such capability of identifying and measuring shock wave speeds can be utilized by various stakeholders for traffic management decision-making that provide a holistic perspective on the importance of both on scene risk as well as the risk at the back of the queue. Near real-time estimation of shock waves using CV data can recommend travel time prediction models and serve as input variables to navigation systems to identify alternate route choice opportunities ahead of a driver’s time of arrival.   </p> <p>The overall contribution of this thesis is developing scalable methodologies and evaluation techniques to extract valuable information from CV data that aids agencies in operational decision making.</p>
7

Comparing bioretention cell and green roof performance in Parma, OH

Sugano, Laura, Sugano 07 May 2018 (has links)
No description available.

Page generated in 0.0828 seconds