• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 546
  • 261
  • 122
  • 46
  • 44
  • 26
  • 26
  • 26
  • 26
  • 26
  • 25
  • 10
  • 10
  • 7
  • 5
  • Tagged with
  • 1225
  • 414
  • 254
  • 196
  • 128
  • 113
  • 113
  • 107
  • 105
  • 98
  • 96
  • 95
  • 92
  • 87
  • 76
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Techniques for rainfall estimation and surface characterization over northern Brazil

Dupigny-Giroux, Lesley-Ann. January 1996 (has links)
The sertao of northeast Brazil is a semiarid region characterized by recurring droughts. The vastness of the area (650,000 km$ sp2)$ poses a challenge to the effective monitoring of the impacts of drought at a scale that would be useful to the inhabitants of the sertao. Remote sensing data provide a viable way of assessing the extent and nature of drought across the landscape. / The work present a more effective algorithm to estimate rainfall from both the cold and warm cloud types present. Using a decision-tree methodology, the analysis yields rainfall estimates over the 0-21 mm range. Because seasonal variations in rainfall produce differences in vegetation, soils and hydrologic responses, Principal Components Analysis was used to examine these land surface responses. Individual components and component pairings were useful in identifying variations in vegetation density, geobotanical differences and drainage characteristics. The presence of cloud cover was found to dampen the land surface information that could be extracted. Landsat Thematic Mapper (TM) imagery was then used to produce a moisture index which characterizes surface wetness in relation to other features present in a scene. The multispectral combination of TM bands 1, 4 and 6 allowed for the separation of the surface types present, in locational space. This space was defined by an open-ended triange made up of a vertical "water line", a horizontal line of equal vegetation density; and a negatively-slopping iso-moisture line. The stability of the moisture index was influenced by varying scale and seasonal conditions. / In the drought conditions that prevailed in 1991-1992, these methods provide important additions to existing drought monitoring approaches in the Brazilian northeast. Further calibration is required in order to extend their applicability to other geographical regions and time frames.
172

High resolution space-time modelling of rainfall : the string of beads model.

Clothier, Antony Neil. 10 November 2011 (has links)
The purpose of this study was to develop a rainfall model, continuous in space-time, which captures both the spatial and temporal structure of rainfall over a range of scales varying from lkm to 128km pixels at temporal resolutions ranging from 5 minute up to 1 year. Such a model could find application in a variety of hydrological fields including the management of flash flood scenarios where it could be used in combination with runoff models as a training tool in the operation of flood control structures, the assessment of flood risk, the management of water resources in an area through the simulation of long rainfall sequences and as a short term rainfall forecasting tool, to name a few. The String of Beads Model (SBM) is a high-resolution space-time model of radar rainfall images. It is a stochastic model that takes advantage of the detailed spatial and temporal information captured by weather radar and combines it with the long term seasonal variation captured by a network of daily raingauges. The alternating wet-dry process, or event arrival and duration, is modelled as a one dimensional process, while the detailed wet process is modelled as a three-dimensional (two space and one time) process at 1km, 5 minute spatial and temporal resolutions respectively, over an area of 16000km2, consistent with the observed radar data. The three-dimensional rainfall events distributed on a one-dimensional time line, is analogous to a "String of Beads". The SBM makes use of a combination of power law numerical filtering techniques and well-known time series models to achieve an efficient algorithm that can be run on an ordinary personal computer. Model output is in the form of image files which, when viewed as an animated sequence, are difficult to distinguish from observed radar rainfall images. Apart from the realistic appearance of these images, when calibrated to daily raingauge data for the region, analysis of the simulated sequences over periods of up to ten years, reveal convincing rainfall statistics for a wide range of spatial and temporal scales. It can be used both as a simulation tool and as a short term forecasting tool. In simulation mode, it can quickly produce long sequences (tens of years) of 128 x 128 km rainfall images at five minute, one kilometre resolution. Such simulations can be used as input to distributed and semi-distributed hydrological models to produce "what if" scenarios for applications in water resources management and flood risk assessment amongst others. In forecasting mode, the SBM has proved effective in producing real time forecasts of up to two hours making it a useful tool for flood warning and management, particularly in steep or urban catchments which react quickly and often give rise to flash floods. It can also be used in a combined simulation-forecasting mode to quickly produce many short term "what if" scenarios which can be used to assess the risk of possible growth or decay scenarios in real time. / Thesis (Ph.D.)-University of Natal, Durban, 2003.
173

Improved estimation of catchment rainfall for continuous simulation modelling.

January 2005 (has links)
Long sequences of rainfall at fme spatial and temporal details are increasingly required, not only for hydrological studies, but also to provide inputs for models of crop growth, land fills, tailing dams, disposal of liquid waste on land and other environmentally-sensitive projects. However, rainfall records from raingauges frequently fail to meet the requirements of the above studies. Therefore, it is important to improve the estimation of the depth and spatial distribution of rainfall falling over a catchment. A number of techniques have been developed to improve the estimation of the spatial distribution of rainfall from sparsely distributed raingauges. These techniques range from simple interpolation techniques developed to estimate areal rainfall from point rainfall measurements, to statistical and deterministic models, which generate rainfall values and downscale the rainfall values based on the physical properties of the clouds or rain cells. Furthermore, these techniques include different statistical methods, which combine the rainfall information gathered from radar, raingauges and satellites. Although merging the radar and raingauge rainfall fields gives a best estimate of the "true rainfall field", the length of the radar record and spatial coverage of the radar in a country such as South Africa is relatively short and hence is of limited use in hydrological studies. Therefore, the relationship between the average merged rainfall value for a catchment and a "driver" station, which is selected to represent rainfall in the catchment, is developed and assessed in this study. Rainfall data from the Liebenbergsvlei Catchment near Bethlehem in the Free State Province and a six-month record of radar data are used to develop relationships between the average merged subcatchment rainfall for each of the Liebenbergsvlei subcatchments and a representative raingauge selected to represent the rainfall in each of the subcatchments. The relationships between daily raingauges and the average rainfall depth of the subcatchments are generally good and in most of the subcatchments the correlation coefficient is greater than 0.5. It was also noted that, in most of the subcatchments, the daily raingauges overestimate the average areal rainfall depth of the subcatchments. In addition, the String of Beads Model (SBM) developed by Clothier and Pegram (2002) was used to generate synthetic rainfall series for the Liebenbergsvlei catchments. The SBM is able to produce rainfall values at a spatial resolution of IxI km with a 5 minute temporal resolution. The SBM is a high-resolution space-time model of radar rainfall images, which takes advantage of the detailed spatial and temporal information captured by weather radar and combines it with the long-term seasonal variation captured by a network of daily raingauges. Statistics from a 50 year period of generated rainfall values were compared with the statistics computed from a 50 year raingauge data series, and it was found that the generated rainfall values mimic the rainfall data from the raingauges reasonably well. The relationship developed between the merged catchment rainfall values and driver rainfall station values, which are selected to represent the mean areal rainfall of the subcatchment, was used to adjust the Conventional Driver rainfall Station (CDS) into Modified Driver Station (MDS) values. Streamflow was simulated using both the CDS and MDS rainfall compared against the observed streamflow from the Liebenbergsvlei catchment. In general, the streamflow simulated by the ACRU model do not correlate well with the observed streamflow, which is attributed to unrealistic observed flow and inter-catchments transfers of water. However, it is noted that the volume of streamflow simulated with the MDS rainfall is only 71 % of that simulated with the CDS rainfall, thus highlighting the limitation of using the CDS rainfall approach for modelling and the need to apply the methodology to improve the estimation of catchment rainfall developed in this study to other catchments in South Africa. / Thesis (M.Sc.)-University of KwaZulu-Natal, 2005.
174

Simulation of rainfall excess on flat rural watersheds in Quebec

Enright, Peter, 1962- January 1988 (has links)
No description available.
175

Techniques for rainfall estimation and surface characterization over northern Brazil

Dupigny-Giroux, Lesley-Ann. January 1996 (has links)
No description available.
176

Simulation of rainfall excess on flat rural watersheds in Quebec

Enright, Peter, 1962- January 1988 (has links)
No description available.
177

An Urban Rainfall Storm Flood Severity Index

Jobin, Erik 08 May 2013 (has links)
Extreme rainfall statistics are important for the design and management of the water resource infrastructure. The standard approach for extreme rainfall event severity assessment is the Intensity-Duration-Frequency (IDF) method. However, this approach does not consider the spatial context of rainfall and consequently does not properly describe rainfall storm severity, nor rarity. This study provides a critical account of the current standard practice and presents an approach that takes into consideration both the spatial context of rainfall storms, and indirectly incorporates runoff to produce a representative approach to assessing urban rainfall storm severity in terms of flood potential. A stepwise regression analysis was performed on a dataset of individual rainfall storm characteristics to best represent documented basement floodings in the City of Edmonton. Finally, the urban rainfall storm flood severity index was shown to be most representative of the documented basement floodings' severity when compared to that of the IDF method.
178

An Urban Rainfall Storm Flood Severity Index

Jobin, Erik January 2013 (has links)
Extreme rainfall statistics are important for the design and management of the water resource infrastructure. The standard approach for extreme rainfall event severity assessment is the Intensity-Duration-Frequency (IDF) method. However, this approach does not consider the spatial context of rainfall and consequently does not properly describe rainfall storm severity, nor rarity. This study provides a critical account of the current standard practice and presents an approach that takes into consideration both the spatial context of rainfall storms, and indirectly incorporates runoff to produce a representative approach to assessing urban rainfall storm severity in terms of flood potential. A stepwise regression analysis was performed on a dataset of individual rainfall storm characteristics to best represent documented basement floodings in the City of Edmonton. Finally, the urban rainfall storm flood severity index was shown to be most representative of the documented basement floodings' severity when compared to that of the IDF method.
179

Changes In The Duration-Depth Characteristics Of Indian Monsoon Rainfall During 1951-2000

Ratan, Ram 07 1900 (has links)
Several previous studies have found that various characteristics of the Indian monsoon rainfall have shown secular changes over the past century. In this study, using a gridded (1degree) daily rainfall dataset, we analyse the spatio-temporal characteristics of the intensity and duration of monsoon (June through September) rainfall for secular changes over the last 50 years. The characteristics of the duration of rain events are described by wet and dry spells. A wet/dry spell is defined as a period of consecutive days with rainfall above/below a particular threshold. We choose to use a threshold that is a function of the local climatological mean, given the spatial heterogeneity of mean monsoon rainfall. The wet and dry spells are then divided into three categories: short [1 to 7 days], moderate [8 to 10 days], long [11 and more days] and analysed for changes over the past 50 years [19512000]. We find that while the number of short duration wet spells show a significant increase over the last 50 years (~15% change), the number of long duration wet spells show a significant decrease (~25%). Furthermore, while the numbers of short duration dry periods have shown a significant increase, the moderate and long duration dry spells do not shown an appreciable change. This increase and decrease in the short and long duration wet spells offset each other and consequently the total number of rainy days during the season has not shown any significant change over the past 50 years. In addition to the duration of wet and dry spells, we also analysed for changes in the accumulated rainfall of the short, medium and long duration wet spells. Our analysis suggests that while the depth of accumulated rainfall in short duration wet spells has shown a significant increase (~20%), the depth of rain in the long duration spells has shown a significant decrease (~30%) in the past fifty years.
180

Scaling Characteristics Of Tropical Rainfall

Madhyastha, Karthik 07 1900 (has links) (PDF)
We study the space-time characteristics of global tropical rainfall. The data used is from the Tropical Rainfall Measuring Mission (TRMM) and spans the years 2000-2009. Using anomaly fields constructed by removing a single mean and by subtracting the climatology of the ten year dataset, we extract the dominant modes of variability of tropical rainfall from an Empirical Orthogonal Function (EOF) analysis. To our knowledge, this is the first attempt at applying the EOF formal-ism to high spatio-temporal resolution global tropical rainfall. Spatial patterns and temporal indices obtained from the EOF analysis with single annual mean removed show large scale patterns associated with the seasonal cycle. Even though the seasonal cycle is dominant, the principal component (PC) time series show fluctuations at subseasonal scales. When the climatological mean is removed, spatial patterns of the dominant modes resemble features associated with tropical intraseasonal variability (ISV). Correspondingly, the signature of a seasonal cycle is relatively suppressed, and the PCs have prominent fluctuations at subseasonal scales. The significance of the leading EOFs is demonstrated by means of a novel ratio plot of the variance captured by the leading EOFs to the variance in the data. This shows that, in regions of high variability (which go hand in hand with high rainfall), the EOF/PC pairs capture a fair amount of the variance (up to 20% for the first EOF/PC pair) in the data. We then pursue an EOF analysis of the finest data resolution available. In particular, we per-form a regional analysis (a global analysis is beyond our present computational resources) of the tropics with 0.25◦×0.25◦, 3-hourly data. The regions we focus on are the Indian region, the Maritime Continent and South America. The spatial patterns obtained reveal a rich hierarchical structure to the leading modes of variability in these regions. Similarly, the PCs associated with these leading spatial modes show variability all the way from 90 days to the diurnal scale. With the results from EOF analysis in hand, we quantify the multiscale spatio-temporal structures encountered in our study. In particular, we examine the power spectra of the PCs and EOFs. A robust feature of the space and time spectra is the distribution of energy or variance across a range of scales. On the temporal front, aside from a seasonal and diurnal peaks, the variance scales as a power-law from a few days to the 90 day period. Similarly, below the planetary scale, from approximately 5000 km to 200 km the spatial spectrum also follows a power-law. Therefore, when trying to understand the variability of tropical rainfall, all scales are important, and it is difficult to justify a focus on isolated space and time scales.

Page generated in 0.0451 seconds