Spelling suggestions: "subject:"mam pressure stripping"" "subject:"aam pressure stripping""
1 |
Ram Pressure Stripping of Molecular Gas / MODELING MOLECULAR GAS SUSCEPTIBILITY TO RAM PRESSURE STRIPPING IN THE VIRGO CLUSTERGreis, Celine January 2024 (has links)
Ram pressure stripping (RPS) can be described as the constant wind a galaxy experiences when moving through a galaxy cluster. It is well-established that galaxies
undergoing this process lose substantial amounts of their atomic gas, but its effect on
the cold molecular gas component is still not fully understood. Using high-resolution
ALMA CO 2-1 data collected by the PHANGS and VERTICO surveys, I model the
detailed effect of RPS in 36 Virgo galaxies on a 150 pc and 720 pc scale by calculating
the ratio of ram pressure to the galaxy gravitational restoring force per unit area. If
the ram pressure exceeds the restoring pressure, we assume the molecular gas parcel
is susceptible to stripping. I reveal that roughly a quarter of our 36 galaxies are
susceptible to molecular gas RPS, with up to 70% of their molecular gas in the outer
disk (r > R50) being susceptible. As expected, low mass galaxies (log(M∗/M ) = 9.5)
seem to be most affected. VERTICO galaxies show molecular gas susceptible to stripping at the outskirts and between their spiral arms. I also find higher fractions of RPS
susceptible molecular gas in galaxies exhibiting clear atomic gas tails, suggesting that
RPS impacts multiple gas phases at once. Finally, a phase space analysis suggests
molecular gas RPS occurs primarily, potentially exclusively, at the first pericentric
passage when ram pressure is maximal. / Thesis / Master of Science (MSc)
|
2 |
THE INTERACTION BETWEEN THE INTRACLUSTER MEDIUM AND THE CLUSTER STELLAR CONTENTSivanandam, Suresh January 2010 (has links)
We study specific aspects of the relationship between the stellar content and the intracluster media (ICM) of galaxy clusters. First, we attempt to solve the long-standing difficulty in explaining the highly enriched ICM by including a previously unaccounted for stellar component: the intracluster stars. To determine the relative contributions of galactic and intracluster stars to the enrichment of the intracluster medium (ICM), we present X-ray surface brightness, temperature, and Fe abundance profiles for a set of twelve galaxy clusters for which we have extensive optical photometry. Assuming a standard IMF and simple chemical evolution model scaled to match the present-day cluster early-type SN Ia rate, the stars in the brightest cluster galaxy (BCG) plus the intracluster stars (ICS) generate 31⁺¹¹₋₉%, on average, of the observed ICM Fe within r₅₀₀(∼ 0.6 times r₂₀₀, the virial radius). Because the ICS typically contribute 80% of the BCG+ICS Fe, we conclude that the ICS are significant, yet often neglected, contributors to the ICM Fe within r₅₀₀. However, the BCG+ICS fall short of producing all the Fe, so metal loss from stars in other cluster galaxies must also contribute. By combining the enrichment from intracluster and galactic stars, we can account for all the observed Fe. These models require a galactic metal loss fraction (0.84(−0.14)^(+0.11)) that, while large, is consistent with theoretical models of Fe mass not retained by galactic stars. The SN Ia rates, especially as a function of galaxy environment and redshift, remain a significant source of uncertainty in further constraining the metal loss fraction. Second, we study the effects of ram-pressure stripping on infalling galaxies using a warm molecular hydrogen (H₂) as a tracer by carrying out a Spitzer infrared spectrograph (IRS) survey of four galaxies with signatures of ram-pressure stripping. We have discovered two galaxies, ESO 137-001 and NGC 4522, with warm H₂ tails stretching 20 kpc and 4 kpc in length, respectively. In the case of ESO 137-001 where we measure a warm H₂ mass loss rate of ∼ 2 − 3 M⊙ yr⁻¹, we estimate that the galaxy will lose all of its gas in a single pass through the cluster core. Strong warm H₂ emission is detected in one other galaxy, CGCG 97-073, which a region within its tail that is mainly dominated by H₂ emission. The warm H₂ observed in these three galaxies share similar temperature and column density properties with warm H₂ masses ranging from 10⁶ − 10⁸ M⊙. From a comparison with the SINGS warm H₂ sample, our results indicate that these galaxies experiencing significant ram-pressure stripping show anomalously high warm H₂ emission that cannot be explained purely from star formation. This adds credence to the hypothesis that H₂ within these galaxies is being shock-heated from the interaction with the ICM. We also discover that stripping of warm and hot dust, as measured at 8 μm and 24 μm, is a common feature of the galaxies observed in our sample. In the case of NGC 4522, we capture the turbulent nature of the stripping process. We measure the star formation rates using published Hα and measured 24 μm luminosities for all of our galaxies and find that some of them have suppressed star formation rates compared to similar mass counterparts in the field. We find a possible association between Hα and warm H₂ emission in three of the four galaxies observed. We conclude that the variation of H₂ properties observed in our sample is likely due to the galaxies being in different stages of ram-pressure stripping. Finally, we report on our efforts to improve the performance of the Lochkeed Arizona Infrared Spectrometer (LAIRS), a near-IR, tunable filter imager. We have made significant progress in identifying the sources of key issues such as the a highly asymmetric line profile and the unstable performance of the servo controller at the MMT. Solutions have been implemented for these issues, such as a revised mounting strategy for the tunable filter plates and a completely new controller with higher bandwidth. Significant progress has been made towards resolving these issues, but a few issues remain before LAIRS meets all of its requirements.
|
3 |
Modelling Dust Processing and Evolution in Extreme Environments as seen by Herschel Space Observatory / Modélisation de processus qui agissent sur la poussière et de son évolution dans les régions extrêmes comme observé pas Herschel Space ObservatoryBocchio, Marco 16 September 2014 (has links)
L'objectif principal de mon travail de thèse est de comprendre les processus qui agissent sur la poussière pendant le couplage entre le milieu interstellaire galactique et le milieu intra-amas. Ce processus est d'intérêt particulier dans les phénomènes violents comme les interactions galaxie-galaxie ou le "Ram Pressure Stripping" causé par la chute d'une galaxie vers le centre de l'amas.Initialement, je me suis concentré sur le problème de la destruction de la poussière et le processus de chauffage, en re-visitant les modèles présents en littérature. J'ai particulièrement insisté sur les cas des environnements extrêmes comme le gaz chaud de type coronale (e.g., IGM, ICM, HIM) et les chocs interstellaires générés par les supernovae. Sous ces conditions les petits grains sont détruits rapidement et les gros grains sont chauffés par les collisions avec les électrons énergétiques, en rendent la distribution spectral d'énergie de la poussière très différente de ce qu'on observe dans le milieu interstellaire diffus.Pour tester nos modèles j'ai les appliqués au cas d'une galaxie en interaction, NGC 4438. Les données Herschel de cette galaxie indiquent la présence de la poussière avec une température plus élevée de ce qu'on s'attendait.Avec une analyse à plusieurs longueurs d'onde on montre que cette poussière chaude semble être dans un gaz ionisé et chaud et donc subir à la fois le chauffage collisionnel et la destruction des petits grains.De plus, je me suis focalisé sur l'énigme de longue date à propos de la différence entre les échelles de temps de destruction et formation de la poussière dans la Voie Lactée. Basées sur l'efficacité de destruction de la poussière dans les chocs interstellaires, les estimations précédentes portent à une durée de vie de la poussière plus courte que l'échelle de temps typique de sa formation dans les étoiles AGB. En utilisant un modèle de poussière récent et les dernières estimations pour l'évolution de la poussière, on a réévalué la durée de vie de la poussière dans notre Galaxie. Finalement, j'ai tourné mon attention au phénomène de "Ram Pressure Stripping''. La galaxie ESO 137-001 représente un des meilleurs cas pour étudier cet effet. Sa longue queue H2 intégrée dans une queue de gaz chaud et ionisé soulève des questions sur son possible arrachement de la galaxie ou sa formation en aval dans la queue. Basé sur des récentes simulations numériques, j'ai montré que la formation des molécules de H2 sur la surface des grains dans la queue est un scénario viable. / The main goal of my PhD study is to understand the dust processing that occurs during the mixing between the galactic interstellar medium and the intracluster medium. This process is of particular interest in violent phenomena such as galaxy-galaxy interactions or the "Ram Pressure Stripping'' due to the infalling of a galaxy towards the cluster centre.Initially, I focus my attention to the problem of dust destruction and heating processes, re-visiting the available models in literature. I particularly stress on the cases of extreme environments such as a hot coronal-type gas (e.g., IGM, ICM, HIM) and supernova-generated interstellar shocks. Under these conditions small grains are destroyed on short timescales and large grains are heated by the collisions with fast electrons making the dust spectral energy distribution very different from what observed in the diffuse ISM.In order to test our models I apply them to the case of an interacting galaxy, NGC 4438. Herschel data of this galaxy indicates the presence of dust with a higher-than-expected temperature.With a multi-wavelength analysis on a pixel-by-pixel basis we show that this hot dust seems to be embedded in a hot ionised gas therefore undergoing both collisional heating and small grain destruction.Furthermore, I focus on the long-standing conundrum about the dust destruction and dust formation timescales in the Milky Way. Based on the destruction efficiency in interstellar shocks, previous estimates led to a dust lifetime shorter than the typical timescale for dust formation in AGB stars. Using a recent dust model and an updated dust processing model we re-evaluate the dust lifetime in our Galaxy. Finally, I turn my attention to the phenomenon of "Ram Pressure Stripping''. The galaxy ESO 137-001 represents one of the best cases to study this effect. Its long H2 tail embedded in a hot and ionised tail raises questions about its possible stripping from the galaxy or formation downstream in the tail. Based on recent hydrodynamical numerical simulations, I show that the formation of H2 molecules on the surface of dust grains in the tail is a viable scenario.
|
Page generated in 0.1098 seconds