• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 10
  • 10
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measure-equivalence of quadratic forms

Limmer, Douglas J. 07 May 1999 (has links)
This paper examines the probability that a random polynomial of specific degree over a field has a specific number of distinct roots in that field. Probabilities are found for random quadratic polynomials with respect to various probability measures on the real numbers and p-adic numbers. In the process, some properties of the p-adic integer uniform random variable are explored. The measure Witt ring, a generalization of the canonical Witt ring, is introduced as a way to link quadratic forms and measures, and examples are found for various fields and measures. Special properties of the Haar measure in connection with the measure Witt ring are explored. Higher-degree polynomials are explored with the aid of numerical methods, and some conjectures are made regarding higher-degree p-adic polynomials. Other open questions about measure Witt rings are stated. / Graduation date: 1999
2

Measure-equivalence of quadratic forms /

Limmer, Douglas James. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 1999. / Typescript (photocopy). Includes bibliographical references (leaf 66). Also available on the World Wide Web.
3

Random Harmonic Polynomials

Unknown Date (has links)
The study of random polynomials and in particular the number and behavior of zeros of random polynomials have been well studied, where the rst signi cant progress was made by Kac, nding an integral formula for the expected number of zeros of real zeros of polynomials with real coe cients. This formula as well as adaptations of the formula to complex polynomials and random elds show an interesting dependency of the number and distribution of zeros on the particular method of randomization. Three prevalent models of signi cant study are the Kostlan model, the Weyl model, and the naive model in which the coe cients of the polynomial are standard Gaussian random variables. A harmonic polynomial is a complex function of the form h(z) = p(z) + q(z) where p and q are complex analytic polynomials. Li and Wei adapted the Kac integral formula for the expected number of zeros to study random harmonic polynomials and take particular interest in their interpretation of the Kostlan model. In this thesis we nd asymptotic results for the number of zeros of random harmonic polynomials under both the Weyl model and the naive model as the degree of the harmonic polynomial increases. We compare the ndings to the Kostlan model as well as to the analytic analogs of each model. We end by establishing results which lead to open questions and conjectures about random harmonic polynomials. We ask and partially answer the question, \When does the number and behavior of the zeros of a random harmonic polynomial asymptotically emulate the same model of random complex analytic polynomial as the degree increases?" We also inspect the variance of the number of zeros of random harmonic polynomials, motivating the work by the question of whether the distribution of the number of zeros concentrates near its as the degree of the harmonic polynomial increases. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
4

On Critical Points of Random Polynomials and Spectrum of Certain Products of Random Matrices

Annapareddy, Tulasi Ram Reddy January 2015 (has links) (PDF)
In the first part of this thesis, we study critical points of random polynomials. We choose two deterministic sequences of complex numbers, whose empirical measures converge to the same probability measure in complex plane. We make a sequence of polynomials whose zeros are chosen from either of sequences at random. We show that the limiting empirical measure of zeros and critical points agree for these polynomials. As a consequence we show that when we randomly perturb the zeros of a deterministic sequence of polynomials, the limiting empirical measures of zeros and critical points agree. This result can be interpreted as an extension of earlier results where randomness is reduced. Pemantle and Rivin initiated the study of critical points of random polynomials. Kabluchko proved the result considering the zeros to be i.i.d. random variables. In the second part we deal with the spectrum of products of Ginibre matrices. Exact eigenvalue density is known for a very few matrix ensembles. For the known ones they often lead to determinantal point process. Let X1, X2,..., Xk be i.i.d Ginibre matrices of size n ×n whose entries are standard complex Gaussian random variables. We derive eigenvalue density for matrices of the form X1 ε1 X2 ε2 ... Xk εk , where εi = ±1 for i =1,2,..., k. We show that the eigenvalues form a determinantal point process. The case where k =2, ε1 +ε2 =0 was derived earlier by Krishnapur. In the case where εi =1 for i =1,2,...,n was derived by Akemann and Burda. These two known cases can be obtained as special cases of our result.
5

On Random Polynomials Spanned by OPUC

Aljubran, Hanan 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We consider the behavior of zeros of random polynomials of the from \begin{equation*} P_{n,m}(z) := \eta_0\varphi_m^{(m)}(z) + \eta_1 \varphi_{m+1}^{(m)}(z) + \cdots + \eta_n \varphi_{n+m}^{(m)}(z) \end{equation*} as \( n\to\infty \), where \( m \) is a non-negative integer (most of the work deal with the case \( m =0 \) ), \( \{\eta_n\}_{n=0}^\infty \) is a sequence of i.i.d. Gaussian random variables, and \( \{\varphi_n(z)\}_{n=0}^\infty \) is a sequence of orthonormal polynomials on the unit circle \( \mathbb T \) for some Borel measure \( \mu \) on \( \mathbb T \) with infinitely many points in its support. Most of the work is done by manipulating the density function for the expected number of zeros of a random polynomial, which we call the intensity function.
6

Simulation of Weakly Correlated Functions and its Application to Random Surfaces and Random Polynomials

Fellenberg, Benno, Scheidt, Jürgen vom, Richter, Matthias 30 October 1998 (has links) (PDF)
The paper is dedicated to the modeling and the simulation of random processes and fields. Using the concept and the theory of weakly correlated functions a consistent representation of sufficiently smooth random processes will be derived. Special applications will be given with respect to the simulation of road surfaces in vehicle dynamics and to the confirmation of theoretical results with respect to the zeros of random polynomials.
7

ON RANDOM POLYNOMIALS SPANNED BY OPUC

Hanan Aljubran (9739469) 07 January 2021 (has links)
<div> <br></div><div> We consider the behavior of zeros of random polynomials of the from</div><div> \begin{equation*}</div><div> P_{n,m}(z) := \eta_0\varphi_m^{(m)}(z) + \eta_1 \varphi_{m+1}^{(m)}(z) + \cdots + \eta_n \varphi_{n+m}^{(m)}(z)</div><div> \end{equation*}</div><div> as \( n\to\infty \), where \( m \) is a non-negative integer (most of the work deal with the case \( m =0 \) ), \( \{\eta_n\}_{n=0}^\infty \) is a sequence of i.i.d. Gaussian random variables, and \( \{\varphi_n(z)\}_{n=0}^\infty \) is a sequence of orthonormal polynomials on the unit circle \( \mathbb T \) for some Borel measure \( \mu \) on \( \mathbb T \) with infinitely many points in its support. Most of the work is done by manipulating the density function for the expected number of zeros of a random polynomial, which we call the intensity function.</div>
8

Polynômes aléatoires, gaz de Coulomb, et matrices aléatoires / Random Polynomials, Coulomb Gas and Random Matrices

Butez, Raphaël 04 December 2017 (has links)
L'objet principal de cette thèse est l'étude de plusieurs modèles de polynômes aléatoires. Il s'agit de comprendre le comportement macroscopique des racines de polynômes aléatoires dont le degré tend vers l'infini. Nous explorerons la connexion existant entre les racines de polynômes aléatoires et les gaz de Coulomb afin d'obtenir des principes de grandes déviations pour la mesure empiriques des racines. Nous revisitons l'article de Zeitouni et Zelditch qui établit un principe de grandes déviations pour un modèle général de polynômes aléatoires à coefficients gaussiens complexes. Nous étendons ce résultat au cas des coefficients gaussiens réels. Ensuite, nous démontrons que ces résultats restent valides pour une large classe de lois sur les coefficients, faisant des grandes déviations un phénomène universel pour ces modèles. De plus, nous démontrons tous les résultats précédents pour le modèle des polynômes de Weyl renormalisés. Nous nous intéressons aussi au comportement de la racine de plus grand module des polynômes de Kac. Celle-ci a un comportement non-universel et est en général une variable aléatoire à queues lourdes. Enfin, nous démontrons un principe de grandes déviations pour la mesure empirique des ensembles biorthogonaux. / The main topic of this thesis is the study of the roots of random polynomials from several models. We seek to understand the behavior of the roots as the degree of the polynomial tends to infinity. We explore the connexion between the roots of random polynomials and Coulomb gases to obtain large deviations principles for the empirical measures of the roots of random polynomials. We revisit the article of Zeitouni and Zelditch which establishes the large deviations for a rather general model of random polynomials with independent complex Gaussian coefficients. We extend this result to the case of real Gaussian coefficients. Then, we prove that those results are also valid for a wide class of distributions on the coefficients, which means that those large deviations principles are a universal property. We also prove all of those results for renormalized Weyl polynomials. study the largest root in modulus of Kac polynomials. We show that this random variable has a non-universal behavior and has heavy tails. Finally, we establish a large deviations principle for the empirical measures of biorthogonal ensembles.
9

Simulation of Weakly Correlated Functions and its Application to Random Surfaces and Random Polynomials

Fellenberg, Benno, Scheidt, Jürgen vom, Richter, Matthias 30 October 1998 (has links)
The paper is dedicated to the modeling and the simulation of random processes and fields. Using the concept and the theory of weakly correlated functions a consistent representation of sufficiently smooth random processes will be derived. Special applications will be given with respect to the simulation of road surfaces in vehicle dynamics and to the confirmation of theoretical results with respect to the zeros of random polynomials.
10

Contributions à l'étude des sous-variétés aléatoires / Contributions to the study of random submanifolds

Letendre, Thomas 24 November 2016 (has links)
Dans cette thèse, nous étudions le volume et la caractéristique d'Euler de sous-variétés aléatoires de codimension r ∈ {1, . . . , n} dans une variété ambiante M de dimension n. Dans un premier modèle, dit des ondes riemanniennes aléatoires, M est une variété riemannienne fermée. Nous considérons alors le lieu Zλ des zéros communs de r combinaisons linéaires aléatoires indépendantes de fonctions propres du laplacien associées à des valeurs propres inférieures à λ 0. Nous obtenons alors les asymptotiques du volume moyen et de la caractéristique d'Euler moyenne de Zλ lorsque λ tend vers l'infini. Dans un second modèle, M est le lieu réel d'une variété projective définie sur les réels. On s'intéresse dans ce cadre au lieu d'annulation réel Zd d'une section holomorphe réelle globale aléatoire de E⊗Ld, où E est un fibré hermitien de rang r, L est un fibré en droites hermitien ample et tous deux sont définis sur les réels. Nous estimons alors les moyennes du volume et de la caractéristique d'Euler de Zd quand d tend vers l'infini. Dans ce modèle algébrique réel, nous calculons aussi l'asymptotique de la variance du volume de Zd pour 1 r < n. Nous en déduisons, dans ce cas, des résultats asymptotiques d'équidistribution de Zd dans M / We study the volume and Euler characteristic of codimension r ∈ {1, . . . , n} random submanifolds in a dimension n manifold M. First, we consider Riemannian random waves. That is M is a closed Riemannian manifold and we study the common zero set Zλ of r independent random linear combinations of eigenfunctions of the Laplacian associated to eigenvalues smaller than λ 0. We compute estimates for the mean volume and Euler characteristic of Zλ as λ goes to infinity. We also consider a model of random real algebraic manifolds. In this setting, M is the real locus of a projective manifold defined over the reals. Then, we consider the real vanishing locus Zd of a random real global holomorphic section of E ⊗ Ld, where E is a rank r Hermitian vector bundle, L is an ample Hermitian line bundle and both these bundles are defined over the reals. We compute the asymptotics of the mean volume and Euler characteristic of Zd as d goes to infinity. In this real algebraic setting, we also compute the asymptotic of the variance of the volume of Zd, when 1 r < n. In this case, we prove asympotic equidistribution results for Zd in M

Page generated in 0.0441 seconds