• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 18
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 137
  • 137
  • 28
  • 27
  • 26
  • 24
  • 22
  • 21
  • 19
  • 19
  • 19
  • 17
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Data-driven minimum entropy control for stochastic nonlinear systems using the cumulant-generating function

Zhang, Qichun, Zhang, J., Wang, H. 27 September 2022 (has links)
Yes / This paper presents a novel minimum entropy control algorithm for a class of stochastic nonlinear systems subjected to non-Gaussian noises. The entropy control can be considered as an optimization problem for the system randomness attenuation, but the mean value has to be considered separately. To overcome this disadvantage, a new representation of the system stochastic properties was given using the cumulant-generating function based on the moment-generating function, in which the mean value and the entropy was reflected by the shape of the cumulant-generating function. Based on the samples of the system output and control input, a time-variant linear model was identified, and the minimum entropy optimization was transformed to system stabilization. Then, an optimal control strategy was developed to achieve the randomness attenuation, and the boundedness of the controlled system output was analyzed. The effectiveness of the presented control algorithm was demonstrated by a numerical example. In this paper, a data-driven minimum entropy design is presented without pre-knowledge of the system model; entropy optimization is achieved by the system stabilization approach in which the stochastic distribution control and minimum entropy are unified using the same identified structure; and a potential framework is obtained since all the existing system stabilization methods can be adopted to achieve the minimum entropy objective.
82

Modelo Rathie-Swamee: aplicações e extensão para modelo de regressão / Rathie-Swamee Model: Aplications and extension for regression models

Gomes, Eduardo Monteiro de Castro 18 April 2013 (has links)
Neste trabalho são apresentadas aplicações estatísticas e extensões dos modelos Rathie-Swamee. Propostos em Rathie e Swamee (2006), os modelos Rathie-Swamee foram desenvolvidos a partir de uma generalização da distribuição logística. Esses modelos apresentam grande flexibilidade, assumindo formas unimodais e multimodais, e têm algumas aplicações exemplificadas neste trabalho com dados bimodais de pesca de camarões e de erupções de gêisers. Por meio de simulações desses modelos, são avaliados os desempenhos de diferentes métodos para obtenção de intervalos de confiança para os parâmetros dos modelos e dos estimadores de máxima verossimilhança. As extensões apresentadas para os modelos Rathie-Swamee são referentes à incorporação de covariáveis nos modelos, obtendo-se modelos de regressão. Esses novos modelos de regressão são utilizados para ajuste aos dados de pesca e de erupções, para exemplificar algumas aplicações dos modelos. Uma nova distribuição de probabilidades é apresentada como distribuição resultante de produtos e quocientes entre variáveis aleatórias independentes com distribuições Rathie-Swamee. Para essa nova distribuição é apresentada uma tabela com alguns quantis de interesse para diferentes valores do parâmetro, assim como os resultados de estimação por máxima verossimilhança obtidos para as simulações realizadas com diferentes valores para o parâmetro e tamanhos de amostra. / Applications and extensions to the Rathie-Swamee models are presented in this work. Proposed by Rathie and Swamee (2006), the Rathie-Swamee models were developed as a generalization to the logistic distribution. These models have great flexibility, assuming unimodal and multimodal shapes, and have some of its applications exemplified with bimodal data of shrimp fishing and geyser eruptions. By the use of simulations, the performance of different methods to obtain confidence intervals are compared. The extensions presented for the Rathie-Swamee models refer to the inclusion of covariates, creating regression models. These new regression models are fitted to fishing and eruption data, to exemplify some applications of the models. A new probability distribution is presented as the resulting distribution of quotients and products between independent random variables with Rathie-Swamee distributions. For this new distribution are presented some simulation results along with a table of quantiles for some percentage points of interest.
83

Über die Annäherung von Summenverteilungsfunktionen gegen unbegrenzt teilbare Verteilungsfunktionen in der Terminologie der Pseudomomente

Paditz, Ludwig 27 May 2013 (has links) (PDF)
Die Pseudomomente dienen als Charakteristikum der Annäherung der Komponenten einer Summenverteilungsfunktion gegen die Komponenten der Grenzverteilungsfunktion. In der Terminologie der Pseudomomente werden Abschätzungen der Annäherung der Summenverteilungsfunktion gegen eine unbegrenz teilbare Verteilungsfunktion angegeben. Dabei werden die Aussagen ohne die Voraussetzung der sogenannten Infinitesimalitätsbedingung hergeleitet. Es werden Abschätzungen angegeben sowohl unter der Voraussetzung endlicher Streuungen als auch ohne diese Voraussetzung. Abschließend werden einige Literaturhinweise angegeben. / The pseudo-moments serve as a characteristic of the approach of the components of a cumulative distribution function to the components of the limit distribution function. In the terminology of pseudo-moments estimates of the approximation of the cumulative distribution function by an indefinite divisible distribution function can be specified. The results are derived without the assumption of the so-called condition of infinitesimality. There are given some estimations with or without the assumption of finite variances. Finally some references are given.
84

Über mittlere Abweichungen

Paditz, Ludwig 27 May 2013 (has links) (PDF)
In diesem Artikel werden notwendige und hinreichende Bedingungen für die Gültigkeit von Grenzwertsätzen für mittlere Abweichungen untersucht. In der Terminilogie von J.V.LINNIK (1971) werden die x-Bereiche für mittlere Abweichungen gewöhnlich als "sehr enge" Zonen der integralen normalen Anziehung bezeichnet. Darüber hinaus werden die Restglieder untersucht, die in den asymptotischen Beziehungen auftreten. Die Ordnung der Konvergenzgeschwindigkeit wird angegeben. Frühere Ergebnisse einiger Autoren werden verallgemeinert. Abschließend werden einige Literaturhinweise angegeben. / In this paper we study necessary and sufficient conditions for the validity of limit theorems on moderate deviations. Usually x-zones for moderate deviations are called in the terminilogy by YU.V.LINNIK (1971) "very narrow" zones of integral normal attraction. Moreover we analyse the remainder term appearing in the asymptotic relations. Informations on the order of the rate of convergence are given. Earlier results by several authors are generalized. Finally some references are given.
85

Modelo Rathie-Swamee: aplicações e extensão para modelo de regressão / Rathie-Swamee Model: Aplications and extension for regression models

Eduardo Monteiro de Castro Gomes 18 April 2013 (has links)
Neste trabalho são apresentadas aplicações estatísticas e extensões dos modelos Rathie-Swamee. Propostos em Rathie e Swamee (2006), os modelos Rathie-Swamee foram desenvolvidos a partir de uma generalização da distribuição logística. Esses modelos apresentam grande flexibilidade, assumindo formas unimodais e multimodais, e têm algumas aplicações exemplificadas neste trabalho com dados bimodais de pesca de camarões e de erupções de gêisers. Por meio de simulações desses modelos, são avaliados os desempenhos de diferentes métodos para obtenção de intervalos de confiança para os parâmetros dos modelos e dos estimadores de máxima verossimilhança. As extensões apresentadas para os modelos Rathie-Swamee são referentes à incorporação de covariáveis nos modelos, obtendo-se modelos de regressão. Esses novos modelos de regressão são utilizados para ajuste aos dados de pesca e de erupções, para exemplificar algumas aplicações dos modelos. Uma nova distribuição de probabilidades é apresentada como distribuição resultante de produtos e quocientes entre variáveis aleatórias independentes com distribuições Rathie-Swamee. Para essa nova distribuição é apresentada uma tabela com alguns quantis de interesse para diferentes valores do parâmetro, assim como os resultados de estimação por máxima verossimilhança obtidos para as simulações realizadas com diferentes valores para o parâmetro e tamanhos de amostra. / Applications and extensions to the Rathie-Swamee models are presented in this work. Proposed by Rathie and Swamee (2006), the Rathie-Swamee models were developed as a generalization to the logistic distribution. These models have great flexibility, assuming unimodal and multimodal shapes, and have some of its applications exemplified with bimodal data of shrimp fishing and geyser eruptions. By the use of simulations, the performance of different methods to obtain confidence intervals are compared. The extensions presented for the Rathie-Swamee models refer to the inclusion of covariates, creating regression models. These new regression models are fitted to fishing and eruption data, to exemplify some applications of the models. A new probability distribution is presented as the resulting distribution of quotients and products between independent random variables with Rathie-Swamee distributions. For this new distribution are presented some simulation results along with a table of quantiles for some percentage points of interest.
86

Über die Annäherung von Summenverteilungsfunktionen gegen unbegrenzt teilbare Verteilungsfunktionen in der Terminologie der Pseudomomente

Paditz, Ludwig January 1977 (has links)
Die Pseudomomente dienen als Charakteristikum der Annäherung der Komponenten einer Summenverteilungsfunktion gegen die Komponenten der Grenzverteilungsfunktion. In der Terminologie der Pseudomomente werden Abschätzungen der Annäherung der Summenverteilungsfunktion gegen eine unbegrenz teilbare Verteilungsfunktion angegeben. Dabei werden die Aussagen ohne die Voraussetzung der sogenannten Infinitesimalitätsbedingung hergeleitet. Es werden Abschätzungen angegeben sowohl unter der Voraussetzung endlicher Streuungen als auch ohne diese Voraussetzung. Abschließend werden einige Literaturhinweise angegeben.:1. Einleitung S. 2 2. Abschätzungen unter Voraussetzung endlicher Streuungen S. 3 3. Abschätzungen ohne die Voraussetzung über die Existenz der Streuungen S. 6 4. Beweise S. 9 5. Beispiel S. 11 Literatur S. 12 / The pseudo-moments serve as a characteristic of the approach of the components of a cumulative distribution function to the components of the limit distribution function. In the terminology of pseudo-moments estimates of the approximation of the cumulative distribution function by an indefinite divisible distribution function can be specified. The results are derived without the assumption of the so-called condition of infinitesimality. There are given some estimations with or without the assumption of finite variances. Finally some references are given.:1. Einleitung S. 2 2. Abschätzungen unter Voraussetzung endlicher Streuungen S. 3 3. Abschätzungen ohne die Voraussetzung über die Existenz der Streuungen S. 6 4. Beweise S. 9 5. Beispiel S. 11 Literatur S. 12
87

Über mittlere Abweichungen

Paditz, Ludwig January 1977 (has links)
In diesem Artikel werden notwendige und hinreichende Bedingungen für die Gültigkeit von Grenzwertsätzen für mittlere Abweichungen untersucht. In der Terminilogie von J.V.LINNIK (1971) werden die x-Bereiche für mittlere Abweichungen gewöhnlich als "sehr enge" Zonen der integralen normalen Anziehung bezeichnet. Darüber hinaus werden die Restglieder untersucht, die in den asymptotischen Beziehungen auftreten. Die Ordnung der Konvergenzgeschwindigkeit wird angegeben. Frühere Ergebnisse einiger Autoren werden verallgemeinert. Abschließend werden einige Literaturhinweise angegeben.:1. Einleitung S. 2 2. Allgemeine Grenzwertsätze für mittlere Abweichungen mit Angabe der Ordnung der Konvergenzgeschwindigkeit S. 3 3. Die Existenz von Momenten als notwendige Voraussetzung für die Gültigkeit von Grenzwertsätzen für mittlere Abweichungen S. 7 4. Beweise S. 10 Literatur S. 16 / In this paper we study necessary and sufficient conditions for the validity of limit theorems on moderate deviations. Usually x-zones for moderate deviations are called in the terminilogy by YU.V.LINNIK (1971) "very narrow" zones of integral normal attraction. Moreover we analyse the remainder term appearing in the asymptotic relations. Informations on the order of the rate of convergence are given. Earlier results by several authors are generalized. Finally some references are given.:1. Einleitung S. 2 2. Allgemeine Grenzwertsätze für mittlere Abweichungen mit Angabe der Ordnung der Konvergenzgeschwindigkeit S. 3 3. Die Existenz von Momenten als notwendige Voraussetzung für die Gültigkeit von Grenzwertsätzen für mittlere Abweichungen S. 7 4. Beweise S. 10 Literatur S. 16
88

Pontos aleatórios na natureza: uma introdução aos processos de Poisson e suas aplicações / Random points in nature: An introduction to Poisson processes and their Applications

Rocha, Dimas Francisco 02 February 2018 (has links)
Neste trabalho é apresentado o processo de Poisson, através de exemplos existentes e identificados na natureza e em situações presentes no cotidiano. A distribuição de Poisson foi desenvolvida pelo matemático Siméon Denis Poisson com o intuito de aplicar a teoria das probabilidades em julgamentos criminais. Atualmente é possível aplicar este conceito em problemas que envolvem de modo geral fenômenos aleatórios de chegadas, desenvolvimento em colônia de bactérias, dentre outros. O processo de Poisson consiste em um modelo probabilístico adequado para um grande número de fenômenos observáveis e é de grande importância no estudo da teoria das filas. Ao longo do texto serão apresentadas e discutidas definições, axiomas e condições a fim de esclarecer e facilitar o entendimento do assunto. Uma série de exemplos são detalhados, demonstrando assim o amplo número de possibilidades de aplicações dessa teoria. / This work the Poisson process was presented and some examples exist and identified in the nature and in situations present in the daily. The Poisson distribution was developed by the mathematician Siméon Denis Poisson in order to apply Probability Theory in criminal trials. At present, it is possible to apply these concep to problems that involve, in general, random phenomena of arrivals, development in colony of bacteria, among others. The Poisson process consists of a suitable probabilistic model for a large number of observable phenomena and is of great importance in the study of queue theory. Throughout the text will be presented and discussed definitions, axioms and conditions in order to clarify and facilitate the understanding of the subject. Some examples that were detailed, thus demonstrating the larger number of possibilities of applications of this theory.
89

Pontos aleatórios na natureza: uma introdução aos processos de Poisson e suas aplicações / Random points in nature: An introduction to Poisson processes and their Applications

Dimas Francisco Rocha 02 February 2018 (has links)
Neste trabalho é apresentado o processo de Poisson, através de exemplos existentes e identificados na natureza e em situações presentes no cotidiano. A distribuição de Poisson foi desenvolvida pelo matemático Siméon Denis Poisson com o intuito de aplicar a teoria das probabilidades em julgamentos criminais. Atualmente é possível aplicar este conceito em problemas que envolvem de modo geral fenômenos aleatórios de chegadas, desenvolvimento em colônia de bactérias, dentre outros. O processo de Poisson consiste em um modelo probabilístico adequado para um grande número de fenômenos observáveis e é de grande importância no estudo da teoria das filas. Ao longo do texto serão apresentadas e discutidas definições, axiomas e condições a fim de esclarecer e facilitar o entendimento do assunto. Uma série de exemplos são detalhados, demonstrando assim o amplo número de possibilidades de aplicações dessa teoria. / This work the Poisson process was presented and some examples exist and identified in the nature and in situations present in the daily. The Poisson distribution was developed by the mathematician Siméon Denis Poisson in order to apply Probability Theory in criminal trials. At present, it is possible to apply these concep to problems that involve, in general, random phenomena of arrivals, development in colony of bacteria, among others. The Poisson process consists of a suitable probabilistic model for a large number of observable phenomena and is of great importance in the study of queue theory. Throughout the text will be presented and discussed definitions, axioms and conditions in order to clarify and facilitate the understanding of the subject. Some examples that were detailed, thus demonstrating the larger number of possibilities of applications of this theory.
90

Distribuição Binomial e Aplicações / Binomial Distribution and Applications

ROCHA, Samy Marques 16 February 2017 (has links)
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-04-07T15:18:02Z No. of bitstreams: 1 Samy marques.pdf: 1541887 bytes, checksum: 6335e5c12fc4f4fec24616c00e7613b4 (MD5) / Made available in DSpace on 2017-04-07T15:18:02Z (GMT). No. of bitstreams: 1 Samy marques.pdf: 1541887 bytes, checksum: 6335e5c12fc4f4fec24616c00e7613b4 (MD5) Previous issue date: 2017-02-16 / The Binomial probability distribution is one of the most commonly used to represent data of discrete random variables. In this work, we present the construction of the Binomial model and its main characteristics. The relationship with other distributions is explored following the theoretical aspects and examples of applications. The examples using data from the Brazilian soccer championship can become a motivational proposal for the students of the High School. The methodology is applied with the computational support of free software Geogebra. / A distribuição de probabilidade Binomial é uma das mais utilizadas para representar dados de variáveis aleatórias discretas. Neste trabalho, apresentamos a construção do modelo Binomial e suas principais caracter´ısticas. O relacionamento com outras distribuições é explorado seguindo os aspectos teóricos e exemplos de aplicações. Os exemplos usando dados do campeonato brasileiro de futebol podem se tornar uma proposta motivadora para os alunos do Ensino Médio. A metodologia é aplicada com o apoio computacional do software livre GeoGebra

Page generated in 0.0699 seconds