Spelling suggestions: "subject:"fandom access memory."" "subject:"handom access memory.""
1 |
Design and analysis of fast low power SRAMsAmrutur, Bharadwaj S. January 1900 (has links)
Thesis (Ph.D)--Stanford University, 1999. / Title from pdf t.p. (viewed April 3, 2002). "August 1999." "Adminitrivia V1/Prg/20000907"--Metadata.
|
2 |
Fabrication and characterization of Pac-man shaped magnetic tunneling junctions /Han, Hongmei. January 1900 (has links)
Thesis (Ph. D., Materials Science and Engineering)--University of Idaho, December 2008. / Major professor: Yang-Ki Hong. Includes bibliographical references (leaves 124-132). Also available online (PDF file) by subscription or by purchasing the individual file.
|
3 |
The cache coherence problem in shared-memory multiprocessors /Archibald, James K. January 1987 (has links)
Thesis (Ph. D.)--University of Washington, 1987. / Vita. Bibliography: leaves [213]-215.
|
4 |
The Development of Embedded DRAM Statistical Quality Models at Test and Use ConditionsSuzuki, Satoshi 01 January 2010 (has links)
Today, the use of embedded Dynamic Random Access Memory (eDRAM) is increasing in our electronics that require large memories, such as gaming consoles and computer network routers. Unlike external DRAMs, eDRAMs are embedded inside ASICs for faster read and write operations. Until recently, eDRAMs required high manufacturing cost. Present process technology developments enabled the manufacturing of eDRAM at competitive costs. Unlike SRAM, eDRAM exhibits retention time bit fails from defects and capacitor leakage current. This retention time fail causes memory bits to lose stored values before refresh. Also, a small portion of the memory bits are known to fail at a random retention time. At test conditions, more stringent than use conditions, if all possible retention time fail bits are detected and replaced, there will be no additional fail bits during use. However, detecting all the retention time fails requires long time and also rejects bits that do not fail at the use condition. This research seeks to maximize the detection of eDRAM fail bits during test by determining effective test conditions and model the failure rate of eDRAM retention time during use conditions.
|
5 |
Design of integrated CMOS circuits for parallel detection and storage of optical dataSayles, Andre Harding 08 1900 (has links)
No description available.
|
6 |
Resistive switching in tantalum oxide for emerging non-volatile memory applicationsZhuo, Yiqian Victor January 2014 (has links)
No description available.
|
7 |
Asynchronous memory design.January 1998 (has links)
by Vincent Wing-Yun Sit. / Thesis submitted in: June 1997. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 1-4 (3rd gp.)). / Abstract also in Chinese. / TABLE OF CONTENTS / LIST OF FIGURES / LIST OF TABLES / ACKNOWLEDGEMENTS / ABSTRACT / Chapter 1. --- INTRODUCTION --- p.1 / Chapter 1.1 --- ASYNCHRONOUS DESIGN --- p.2 / Chapter 1.1.1 --- POTENTIAL ADVANTAGES --- p.2 / Chapter 1.1.2 --- DESIGN METHODOLOGIES --- p.2 / Chapter 1.1.3 --- SYSTEM CHARACTERISTICS --- p.3 / Chapter 1.2 --- ASYNCHRONOUS MEMORY --- p.5 / Chapter 1.2.1 --- MOTIVATION --- p.5 / Chapter 1.2.2 --- DEFINITION --- p.9 / Chapter 1.3 --- PROPOSED MEMORY DESIGN --- p.10 / Chapter 1.3.1 --- CONTROL INTERFACE --- p.10 / Chapter 1.3.2 --- OVERVIEW --- p.11 / Chapter 1.3.3 --- HANDSHAKE CONTROL PROTOCOL --- p.13 / Chapter 2. --- THEORY --- p.16 / Chapter 2.1 --- VARIABLE BIT LINE LOAD --- p.17 / Chapter 2.1.1 --- DEFINITION --- p.17 / Chapter 2.1.2 --- ADVANTAGE --- p.17 / Chapter 2.2 --- CURRENT SENSING COMPLETION DETECTION --- p.18 / Chapter 2.2.1 --- BLOCK DIAGRAM --- p.19 / Chapter 2.2.2 --- GENERAL LSD CURRENT SENSOR --- p.21 / Chapter 2.2.3 --- CMOS LSD CURRENT SENSOR --- p.23 / Chapter 2.3 --- VOLTAGE SENSING COMPLETION DETECTION --- p.28 / Chapter 2.3.1 --- DATA READING IN MEMORY CIRCUIT --- p.29 / Chapter 2.3.2 --- BLOCK DIAGRAM --- p.30 / Chapter 2.4 --- MULTIPLE DELAYS COMPLETION GENERATION --- p.32 / Chapter 2.4.1 --- ADVANTAGE --- p.32 / Chapter 2.4.2 --- BLOCK DIAGRAM --- p.33 / Chapter 3. --- IMPLEMENTATION --- p.35 / Chapter 3.1 --- 1M-BIT SRAM FRAMEWORK --- p.36 / Chapter 3.1.1 --- INTRODUCTION --- p.36 / Chapter 3.1.2 --- FRAMEWORK --- p.36 / Chapter 3.2 --- CONTROL CIRCUIT --- p.40 / Chapter 3.2.1 --- CONTROL SIGNALS --- p.40 / Chapter 3.2.1.1 --- EXTERNAL CONTROL SIGNALS --- p.40 / Chapter 3.2.1.2 --- INTERNAL CONTROL SIGNALS --- p.41 / Chapter 3.2.2 --- READ / WRITE STATE TRANSITION GRAPHS --- p.42 / Chapter 3.2.3 --- IMPLEMENTATION --- p.43 / Chapter 3.3 --- BIT LINE SEGMENTATION --- p.45 / Chapter 3.3.1 --- FOUR REGIONS SEGMENTATION --- p.46 / Chapter 3.3.2 --- OPERATION --- p.50 / Chapter 3.3.3 --- MEMORY CELL --- p.51 / Chapter 3.4 --- CURRENT SENSING COMPLETION DETECTION --- p.52 / Chapter 3.4.1 --- ONE BIT DATA BUS --- p.53 / Chapter 3.4.2 --- EIGHT BITS DATA BUS --- p.55 / Chapter 3.5 --- VOLTAGE SENSING COMPLETION DETECTION --- p.57 / Chapter 3.5.1 --- ONE BIT DATA BUS --- p.57 / Chapter 3.5.2 --- EIGHT BITS DATA BUS --- p.59 / Chapter 3.6 --- MULTIPLE DELAYS COMPLETION GENERATION --- p.60 / Chapter 4. --- SIMULATION --- p.63 / Chapter 4.1 --- SIMULATION ENVIRONMENT --- p.64 / Chapter 4.1.1 --- SIMULATION PARAMETERS --- p.64 / Chapter 4.1.2 --- MEMORY TIMING SPECIFICATIONS --- p.64 / Chapter 4.1.3 --- BIT LINE LOAD DETERMINATION --- p.67 / Chapter 4.2 --- BENCHMARK SIMULATION --- p.69 / Chapter 4.2.1 --- CIRCUIT SCHEMATIC --- p.69 / Chapter 4.2.2 --- RESULTS --- p.71 / Chapter 4.3 --- CURRENT SENSING COMPLETION DETECTION --- p.73 / Chapter 4.3.1 --- CIRCUIT SCHEMATIC --- p.73 / Chapter 4.3.2 --- SENSE AMPLIFIER CURRENT CHARACTERISTICS --- p.75 / Chapter 4.3.3 --- RESULTS --- p.76 / Chapter 4.3.4 --- OBSERVATIONS --- p.80 / Chapter 4.4 --- VOLTAGE SENSING COMPLETION DETECTION --- p.82 / Chapter 4.4.1 --- CIRCUIT SCHEMATIC --- p.82 / Chapter 4.4.2 --- RESULTS --- p.83 / Chapter 4.5 --- MULTIPLE DELAYS COMPLETION GENERATION --- p.89 / Chapter 4.5.1 --- CIRCUIT SCHEMATIC --- p.89 / Chapter 4.5.2 --- RESULTS --- p.90 / Chapter 5. --- TESTING --- p.97 / Chapter 5.1 --- TEST CHIP DESIGN --- p.98 / Chapter 5.1.1 --- BLOCK DIAGRAM --- p.98 / Chapter 5.1.2 --- SCHEMATIC --- p.100 / Chapter 5.1.3 --- LAYOUT --- p.102 / Chapter 5.2 --- HSPICE POST-LAYOUT SIMULATION RESULTS --- p.104 / Chapter 5.2.1 --- GRAPHICAL RESULTS --- p.105 / Chapter 5.2.2 --- VOLTAGE SENSING COMPLETION DETECTION --- p.108 / Chapter 5.2.3 --- MULTIPLE DELAYS COMPLETION GENERATION --- p.114 / Chapter 5.3 --- MEASUREMENTS --- p.117 / Chapter 5.3.1 --- LOGIC RESULTS --- p.118 / Chapter 5.3.1.1 --- METHOD --- p.118 / Chapter 5.3.1.2 --- RESULTS --- p.118 / Chapter 5.3.2 --- TIMING RESULTS --- p.119 / Chapter 5.3.2.1 --- METHOD --- p.119 / Chapter 5.3.2.2 --- GRAPHICAL RESULTS --- p.121 / Chapter 5.3.2.3 --- VOLTAGE SENSING COMPLETION DETECTION --- p.123 / Chapter 5.3.2.4 --- MULTIPLE DELAYS COMPLETION GENERATION --- p.125 / Chapter 6. --- DISCUSSION --- p.127 / Chapter 6.1 --- CURRENT SENSING COMPLETION DETECTION --- p.128 / Chapter 6.1.1 --- COMMENTS AND CONCLUSION --- p.128 / Chapter 6.1.2 --- SUGGESTION --- p.128 / Chapter 6.2 --- VOLTAGE SENSING COMPLETION DETECTION --- p.129 / Chapter 6.2.1 --- RESULTS COMPARISON --- p.129 / Chapter 6.2.1.1 --- GENERAL --- p.129 / Chapter 6.2.1.2 --- BIT LINE LOAD --- p.132 / Chapter 6.2.1.3 --- BIT LINE SEGMENTATION --- p.133 / Chapter 6.2.2 --- RESOURCE CONSUMPTION --- p.133 / Chapter 6.2.2.1 --- AREA --- p.133 / Chapter 6.2.2.2 --- POWER --- p.134 / Chapter 6.2.3 --- COMMENTS AND CONCLUSION --- p.134 / Chapter 6.3 --- MULTIPLE DELAY COMPLETION GENERATION --- p.135 / Chapter 6.3.1 --- RESULTS COMPARISON --- p.135 / Chapter 6.3.1.1 --- GENERAL --- p.135 / Chapter 6.3.1.2 --- BIT LINE LOAD --- p.136 / Chapter 6.3.1.3 --- BIT LINE SEGMENTATION --- p.137 / Chapter 6.3.2 --- RESOURCE CONSUMPTION --- p.138 / Chapter 6.3.2.1 --- AREA --- p.138 / Chapter 6.3.2.2 --- POWER --- p.138 / Chapter 6.3.3 --- COMMENTS AND CONCLUSION --- p.138 / Chapter 6.4 --- GENERAL COMMENTS --- p.139 / Chapter 6.4.1 --- COMPARISON OF THE THREE TECHNIQUES --- p.139 / Chapter 6.4.2 --- BIT LINE SEGMENTATION --- p.141 / Chapter 6.5 --- APPLICATION --- p.142 / Chapter 6.6 --- FURTHER DEVELOPMENTS --- p.144 / Chapter 6.6.1 --- INTERACE WITH TWO-PHASE HCP --- p.144 / Chapter 6.6.2 --- DATA BUS EXPANSION --- p.146 / Chapter 6.6.3 --- SPEED OPTIMIZATION --- p.147 / Chapter 6.6.4 --- MODIFIED WRITE COMPLETION METHOD --- p.150 / Chapter 7. --- CONCLUSION --- p.152 / Chapter 7.1 --- PROBLEM DEFINITION --- p.152 / Chapter 7.2 --- IMPLEMENTATION --- p.152 / Chapter 7.3 --- EVALUATION --- p.153 / Chapter 7.4 --- COMMENTS AND SUGGESTIONS --- p.155 / Chapter 8. --- REFERENCES --- p.R-l / Chapter 9. --- APPENDIX --- p.A-l / Chapter 9.1 --- HSPICE SIMULATION PARAMETERS --- p.A-l / Chapter 9.1.1 --- TYPICAL SIMULATION CONDITION --- p.A-l / Chapter 9.1.2 --- FAST SIMULATION CONDITION --- p.A-3 / Chapter 9.1.3 --- SLOW SIMULATION CONDITION --- p.A-4 / Chapter 9.2 --- SRAM CELL LAYOUT AND NETLIST --- p.A-5 / Chapter 9.3 --- TEST CHIP SPECIFICATIONS --- p.A-8 / Chapter 9.3.1 --- GENERAL SPECIFICATIONS --- p.A-8 / Chapter 9.3.2 --- PIN ASSIGNMENT --- p.A-9 / Chapter 9.3.3 --- TIMING DIAGRAMS AND SPECIFICATIONS --- p.A-10 / Chapter 9.3.4 --- SCHEMATICS AND LAYOUTS --- p.A-11 / Chapter 9.3.4.1 --- STANDARD MEMORY COMPONENTS --- p.A-12 / Chapter 9.3.4.2 --- DVSCD AND MDCG COMPONENTS --- p.A-20 / Chapter 9.3.5 --- MICROPHOTOGRAPH --- p.A-25
|
8 |
Research on Fabrication and Physical Mechanisms of Next-Generation Novel Nonvolatile Resistive Memory DevicesSyu, Yong-En 17 July 2012 (has links)
Resistive Random Access Memory (RRAM) is considered as the most promising candidate for the next-generation nonvolatile memories due to their superior properties such as low operation voltage, fast operation speed, non-destructive read, simple metal-insulator-metal (MIM) sandwich structure, good scale-down ability. The main targets of this research are to clarify the corresponding physical mechanism, develop the potential material and structure of RRAM and stabilize the resistive switching characteristics, in which clarifying the physical mechanism will be the key factor for RRAM into production in the future.
Recent research has suggested that variation of the low and high resistance states in RRAM could be caused due to the by instability in the formation and /disruption of the filament. In addition, the endurance and stability of RRAM may be related to the dissipation of oxygen ions in the switching layer. In this study, new material (Si Introduced) and structure (oxygen confined layer) are employed to improve RRAM performance and to clarify the physical mechanism. Furthermore, constant switching energy results can be used to select the optimal materials and structures also can be used to correctly allocate voltage and time to control RRAM.
The detail physical mechanism is studied by the stable RRAM device (Ti/HfO2/TiN) which is offered from Industrial Technology Research Institute (ITRI). The switching process is proved as the formation/disruption of the filament. Furthermore, the dynamic switching behaviors during reset procedure in RRAM were analyzed by the sequential experimental design to illustrate the procedure of atomic quantized reaction at the ultra-cryogenic temperature.
|
9 |
Design and Implementaion of a High-Performance Memory GeneratorLee, Wan-Ping 18 August 2004 (has links)
The SRAM memory generator in this thesis is divided into four parts: row decoder, storage cell, column decoder, and sense amplifier & write controller. The row decoder is designed using pass-transistors logic with better area and regularity compared with conventional NAND based decoders. Two different column decoders, tree structure and NOR based predecoder, are provided in current version. Although only SRAM is implemented in this thesis, the memory generator platform is complete with all the necessary models required in the embedded design. In the future, other memories, such as cache, shift register, FIFO, stacks, ROM, register files, and content addressable memory, can be integrated in this memory generator platform.
|
10 |
An energy efficient cache design using spin torque transfer (STT) RAMRasquinha, Mitchelle 23 August 2011 (has links)
The advent of many core architectures has coincided with the energy and power
limited design of modern processors. Projections for main memory clearly show
widening of the processor-memory gap. Cache capacity increased to help reduce
this gap will lead to increased energy and area usage and due to small growth in
die size, impede performance scaling that has accompanied Moore's Law to date.
Among the dominant sources of energy consumption is the on-chip memory hierar-
chy, specically the L2 cache and the Last Level Cache (LLC). This work explores
the use of a novel non-volatile memory technology - Spin Torque Transfer RAM
(STT RAM)" for the design of the L2/LLC caches. While STTRAM is a promising
memory technology, it has some limitations, particularly in terms of write energy and
write latencies. The main objectives of this thesis is to use a novel cell design for a
non-volatile 1T1MTJ cell and demonstrate its use at the L2 and LLC cache levels
with architectural optimizations to maximize energy reduction. The proposed cache
hierarchy dissipates significantly lesser energy (both leakage and dynamic) and uses
less area in comparison to a conventional SRAM based cache designs.
|
Page generated in 0.0806 seconds