• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Groupes simples connexes minimaux de type impair

Deloro, Adrien 04 May 2007 (has links) (PDF)
Le but de la thèse est l'étude de certains "petits" groupes de rang de Morley fini. La conjecture de Cherlin-Zilber affirme que les groupes simples infinis de rang de Morley fini sont algébriques. Dans le cadre d'une approche inductive, "petit" doit signifier simple et minimal, dans le sens où le groupe ambiant est simple mais que toute section propre connexe en est résoluble. Le seul tel groupe algébrique est PSL2 ; la thèse est vouée à reconnaître ce groupe sous certaines hypothèses supplémentaires, et à limiter les pathologies sinon. On s'est placé en type impair, ce qui revient à attendre un corps (algébriquement clos) de caractéristique impaire ou nulle. L'identification de PSL2 (chapitre 3) ainsi que l'étude des éventuelles configurations non-algébriques (chapitre 5) repose essentiellement sur une notion d'unipotence en caractéristique nulle introduite par Burdges. Celle-ci permet dans le contexte simple connexe minimal de nombreux lemmes de rigidité, offrant ainsi une théorie complexe mais puissante des intersections de sous-groupes de Borel.
2

Étude de quelques liens entre les groupes de rang de Morley fini et les groupes algébriques linéaires / On links between finite Morley and algebraic groups

Tindzogho Ntsiri, Jules 25 June 2013 (has links)
Cette thèse traite essentiellement des liens qui peuvent exister entreles groupes de rang de Morley fini et les groupes algébriques linéaires. Eneffet, nous y établissons quelques propriétés algébriques aux K-groupes ;d'ailleurs une étude de linéarité sur ces groupes est dressée et permeten particulier d'obtenir une généralisation du théorème de Levi sur ladécomposition des groupes algébriques. Ensuite, nous étudions dans ununivers de rang de Morley fini, une action définissable de SL2(K) surun groupe abélien SL2(K)-minimal V où K est un corps définissable decaractéristique positive p > 0. À cet effet, nous montrons que le rang deMorley rk(V ) de V est pair et multiple de rk(K). Enfin, nous analysonssous quelles conditions, étant donné G un groupe algébrique sur un corpsalgébriquement clos de caractéristique non nulle, le quotient G=Z(G) estdéfinissablement linéaire.Par ailleurs, nous montrons sous certaines hypothèses le groupe desautomorphismes définissables d'un K*-groupe simple est interprétable. / This thesis essentially focuses on relationships that may exist betweengroups of finite Morley rank and linear algebraic groups. Indeed, weestablish some algebraic properties to K-groups; while a linearity studyon these groups is drawn and allows in particular to obtain an analogueto Levi decomposition theorem of algebraic groups. Next, in a univers offinite Morley rank, we study a definable action of SL2(K) on an abeliangroup V such as V is SL2(K)-minimal, where K is an definable field ofnonzero characteristic. For that purpose, we show that Morley rank ofV denoted rk(V ) is even and multiple of rk(K). Finally, we analyze theconditions under which, given an algebraic group G over an algebraicallyfield of nonzero characteristic, the quotient G=Z(G) is definably linear.Besides, we show under certain assymptions that the group of definable automorphism of a simple K*-group is interpretable.

Page generated in 0.0371 seconds