• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Signal and neutral processing techniques for the interpretation of mobile robot ultrasonic range data

Thomas, Seimon M. January 1994 (has links)
No description available.
2

Integrated electronic and optoelectronic circuits and devices for pulsed time-of-flight laser rangefinding

Palojärvi, P. (Pasi) 04 April 2003 (has links)
Abstract The main focus of this work concerned with the development of integrated electronic and optoelectronic circuits and devices for pulsed time-of-flight laser rangefinding is on the construction of the receiver channel, system level integration aimed at realisation of the laser radar module and in integration of all the receiver functions of laser radar on one chip. Since the timing discriminator is a very important part of a pulsed time-of-flight laser rangefinder, two timing discrimination methods are presented and verified by means of circuit implementations, a leading edge discriminator and a high-pass timing discriminator. The walk error of the high-pass timing discriminator is ±4 mm in a dynamic range of 1:620 and the uncompensatable walk error of the leading edge discriminator is ±30 mm in a dynamic range of 1:4000. Additionally a new way of combining the timing discriminator with time interval measurement is presented which achieves a walk error of ±0.5 mm in a dynamic range of 1:21. The usability of the receiver channel chip is verified by constructing three prototypes of pulsed TOF laser radar module. The laser radar achieves mm-level accuracy in a measurement range from 4 m to 34 m with non-cooperative targets. This performance is similar to that of earlier realisations using discrete components or even better and has markedly reduced power consumption and size. The integration level has been increased further by implementing a photodetector on the same chip as the rest of the receiver electronics. The responsivity of the photodetector is about 0.3 A/W at 850 nm wavelength and the noise of the receiver is reduced by a factor of about two relative to realisations using an external photodetector, because of the absence of parasitic capacitances and inductances caused by packages, PCB wiring, bond wires and ESD and I/O cell structures. The functionality of a multi-channel pulsed TOF laser radar chip is demonstrated using the photodiode structure investigated here. The chip includes four photodetectors with receiver channels and a three-channel time-to-digital converter. The chip together with external optics and a laser pulse transmitter enables distances to be measured in three directions with a single optical pulse, thus showing the feasibility of implementing all the receiver functions of a pulsed time-of-flight imager on a single chip using a current semiconductor process.
3

Integrated receiver channel circuits and structures for a pulsed time-of-flight laser radar

Ruotsalainen, T. (Tarmo) 14 April 1999 (has links)
Abstract This thesis describes the development of integrated structures and circuit implementations for the receiver channel of portable pulsed time-of-flight laser rangefinders for industrial measurement applications where the measurement range is from ∼1 m to ∼100 m to noncooperative targets and the required measurement accuracy is from a few millimetres to a few centimetres. The receiver channel is used to convert the current pulse from a photodetector to a voltage pulse, amplify it, discriminate the timing point and produce an accurately timed logic-level pulse for a time-to-digital converter. Since the length of the laser pulse, typically 5 ns, is large compared to the required accuracy, a specific point in the pulses has to be discriminated. The amplitude of the input pulses varies widely as a function of measurement range and the reflectivity of the target, typically from 1 to 100 ... 1000, so that the gain of the amplifier channel needs to be controlled and the discrimination scheme should be insensitive to the amplitude variation of the input signal. Furthermore, the amplifier channel should have low noise in order to minimize timing jitter. Alternative circuit structures are discussed, the treatment concentrating on the preamplifier, gain control circuitry and timing discriminator, which are the key circuit blocks from the performance point of view. New circuit techniques and structures, such as a fully differential transimpedance preamplifier and a current mode gain control scheme, have been developed. Several circuit implementations for different applications are presented together with experimental results, one of them being a differential BiCMOS receiver channel with a bandwidth of 170 MHz, input referred noise of 6 pA/√Hz and maximum transimpedance of 260 kW. It has an accuracy of about +/- 7 mm (average of 10000 measurements), taking into account walk error with an input signal range of 1:624 and jitter (3s). The achievable performance level using integrated circuit technology is comparable or superior to that of the previously developed commercially available discrete component implementations, and the significantly reduced size and power consumption open up new application areas.
4

Pulsed time-of-flight laser range finder techniques for fast, high precision measurement applications

Kilpelä, A. (Ari) 30 January 2004 (has links)
Abstract This thesis describes the development of high bandwidth (~1 GHz) TOF (time-of-flight) laser range finder techniques for industrial measurement applications in the measurement range of zero to a few dozen metres to diffusely reflecting targets. The main goal has been to improve single-shot precision to mm-level in order to shorten the measurement result acquisition time. A TOF laser range finder consists of a laser transmitter, one or two receivers and timing discriminators, and a time measuring unit. In order to improve single-shot precision the slew-rate of the measurement pulse should be increased, so the optical pulse of the laser transmitter should be narrower and more powerful and the bandwidth of the receiver should be higher without increasing the noise level too much. In the transmitter usually avalanche transistors are used for generating the short (3–10 ns) and powerful (20–100 A) current pulses for the semiconductor laser. Several avalanche transistor types were compared and the optimization of the switching circuit was studied. It was shown that as high as 130 A current pulses are achievable using commercially available surface mount avalanche transistors. The timing discriminator was noticed to give the minimum walk error, when high slew rate measurement pulses and a high bandwidth comparator were used. A walk error of less than +/- 1 mm in an input amplitude dynamic range higher than 1:10 can be achieved with a high bandwidth receiver channel. Adding an external offset voltage between the input nodes of the comparator additionally minimized the walk error. A prototype ~1 GHz laser range finder constructed in the thesis consists of a laser pulser and two integrated ASIC receiver channels with silicon APDs (avalanche photodiodes), crossover timing discriminators and Gilbert cell attenuators. The laser pulser utilizes an internal Q-switching mode of a commercially available SH-laser and produces optical pulses with a pulse peak power and FWHM (full-width-at-half-maximum) of 44 W and 74 ps, respectively. Using single-axis optics and 1 m long multimode fibres between the optics and receivers a total accuracy of +/-2 mm in the measurement range of 0.5–34.5 m was measured. The single-shot precision (σ-value) was 14 ps–34 ps (2–5 mm) in the measurement range. The single-shot precision agrees well with the simulations and is better with a factor of about 3-5 as compared to earlier published pulsed TOF laser radars in comparable measuring conditions.
5

Mobile Robot Localization Using Sonar

Drumheller, Michael 01 January 1985 (has links)
This paper describes a method by which range data from a sonar or other type of rangefinder can be used to determine the 2-dimensional position and orientation of a mobile robot inside a room. The plan of the room is modeled as a list of segments indicating the positions of walls. The method works by extracting straight segments from the range data and examining all hypotheses about pairings between the segments and walls in the model of the room. Inconsistent pairings are discarded efficiently by using local constraints based on distances between walls, angles between walls, and ranges between walls along their normal vectors. These constraints are used to obtain a small set of possible positions, which is further pruned using a test for physical consistency. The approach is extremely tolerant of noise and clutter. Transient objects such as furniture and people need not be included in the room model, and very noisy, low-resolution sensors can be used. The algorithm's performance is demonstrated using Polaroid Ultrasonic Rangefinder, which is a low-resolution, high-noise sensor.
6

Integrated receiver channel and timing discrimination circuits for a pulsed time-of-flight laser rangefinder

Kurtti, S. (Sami) 08 January 2013 (has links)
Abstract In this thesis integrated receiver channel techniques and circuit implementations for a pulsed time-of-flight (TOF) laser rangefinder are developed with the aim to achieve centimetre level accuracy within the dynamic range of > 1:10 000 of the input pulse amplitudes. The receiver channel converts the input current pulses produced by the photo detector to voltage pulses and produces a logic-level timing pulse for the time interval measurement. In addition to the minimization of noise, the main design challenge is the minimization of the timing walk error resulting from the varying amplitude of the received optical echo. In automotive perception laser radar application, which was the target application of this work, the input amplitude of the received echo varies in a range of 1:10 000 or even more due to changes in the measured distance and reflectivity and orientation of the target. Two receiver channel and timing discriminator architectures were developed and realized as integrated circuits in 0.35 μm BiCMOS technology, and finally verified by measurements. One of the receiver channels is based on the detection of the zero-crossing of the timing pulse produced with a unipolar-to-bipolar conversion at the input of the receiver. It achieved a timing walk error of ±8 mm in a dynamic range of 1:3000. Another receiver channel is based on the leading edge timing discrimination, in which the timing walk error is being compensated for in time domain by measuring the width of the timing pulse simultaneously with its leading edge time position. An important feature of this technique, suggested in this thesis, is that it is operative also beyond the linear range of the receiver channel, which is typically limited to < 1:100. The receiver channel with leading edge detection and pulse width compensation achieved a compensated walk error of ± 2–3 mm in a dynamic range of ~ 1:100 000. The bandwidth and input referred current noise of the channel were 230 MHz and <100 nArms, respectively. The single-shot timing precision was 120 ps (20 mm in distance) at the SNR of 10. The feasibility of the receiver electronics was verified by two laser radar prototypes. An accuracy of < ± 5 mm was measured in a measurement range from 1 to 55 m, which corresponds to the receiver dynamic range of > 1:10 000 taking into consideration the varying reflectivity of the target materials used. / Tiivistelmä Väitöskirjatyössä on suunniteltu integroituja vastaanotintekniikoita ja –piirejä valopulssin kulkuaikamittaustekniikkaan perustuvaan laseretäisyysmittaukseen. Tavoitteena on ollut saavuttaa senttimetriluokan tarkkuus laajalla tulopulssin amplitudin dynaamisella alueella > 1:10 000. Vastaanotinkanava muuntaa valoilmaisimelta saadun tulovirtapulssin jännitepulssiksi ja muodostaa siitä logiikkatasoisen ajoituspulssin aikavälimittauspiirille. Kohinan minimoimisen lisäksi toinen suuri suunnitteluhaaste on minimoida ajoitusvirhe, jota syntyy vastaanotetun optisen tulosignaalin amplitudin vaihdellessa laajalla alueella. Työssä kehitettyjen vastaanotinkanavien yksi sovelluskohdetavoitteista on ollut autoteollisuudessa käytettävät etäisyysmittarit. Näissä tulosignaalin taso vaihtelee erittäin laajalla dynaamisella alueella, joka voi olla > 1:10 000, johtuen laajasta etäisyysmittausalueesta sekä kohteen heijastavuuden ja orientaation vaihteluista. Väitöskirjatyössä kehitettiin ja valmistettiin kaksi vastaanotin- ja ajoitusilmaisurakennetta. Piirit valmistettiin 0,35 μm BiCMOS- teknologialla, ja niiden toiminta varmistettiin mittauksilla. Ensimmäinen vastaanotinkanava-arkkitehtuuri perustuu kanavan tulossa tapahtuvaan unipolaari-bipolaari muutokseen ja sen jälkeiseen nollaylityskohdan ilmaisuun. Piirillä saavutettiin ±8 mm ajoitusvirhe 1:3000 dynaamisella alueella. Toinen vastaanotinkanava-arkkitehtuuri perustuu etureunanilmaisuun, jossa ajoitusvirhe korjataan aikatasossa mittaamalla samanaikaisesti ajoituspulssin paikka ja leveys. Ajoitusvirheenkorjausmenetelmän tärkeä ominaisuus on, että se toimii laajemmalla kuin vastaanottimen lineaarisella alueella (< 1:100). Etureunanilmaisuun ja pulssinleveyden korjaukseen perustuvalla vastaanotinkanavalla saavutettiin korjattu ajoitusvirhe ± 2–3 mm 1:100 000 dynaamisella alueella. Kanavan kaistanleveys oli 230 MHz ja tulon redusoitu virtakohina < 100 nArms. Signaalikohinasuhteella 10 laseretäisyysmittauksen kertamittaustarkkuudeksi mitattiin 120 ps (20 mm etäisyydessä). Väitöskirjatyön yhteydessä valmistettiin lisäksi kaksi prototyyppilasertutkaa, joilla varmistettiin vastaanotinelektroniikan toiminta laajalla > 1:10 000 dynaamisella tulopulssin amplitudin vaihtelualueella. Lasertutkan ajoitusvirheeksi mitattiin < ± 5 mm 1–55 m:n mittausalueella.
7

The Raspberry Pi Embedded Linux Computer as an Alternative Controller for Remote Access Laboratories

Marvin, Michael Dennis 14 May 2014 (has links)
No description available.
8

Integrated CMOS receiver techniques for sub-ns based pulsed time-of-flight laser rangefinding

Hintikka, M. (Mikko) 29 January 2019 (has links)
Abstract The goal of this work was to develop a CMOS receiver for a time-of-flight (TOF) laser rangefinder utilizing sub-ns pulses produced by a laser diode operating in gain switching mode (~ 1 nJ transmitter energy). This thesis also discusses the optical detector components and their usability with sub-ns optical pulses in laser rangefinding and the effect of the laser driver electronics on the shape of the sub-ns laser output, and eventually on the timing walk error of the laser rangefinder. The thesis presents the design of an integrated receiver channel IC intended for use in the pulsed TOF rangefinder. This is realized in a low-cost and consumer electronics-friendly CMOS technology (0.18 μm) and is based on a linear receiver and leading edge time discrimination. The measured walk error of the receiver is ~ 500 ps (4.5 cm in distance) within a 1:21,000 dynamic range. The measured jitter of the leading edge, affecting the single-shot precision of the radar, was ~ 12 ps (1.6 mm in distance) at an SNR > 200. In addition, a pulsed TOF rangefinder using the receiver IC developed here was designed and used for demonstrating the possibility of measuring tiny vibrations in a distant non-cooperative target. The radar was used successfully to observe 10 Hz vibrations in a non-cooperative target with an amplitude of 1.5 mm (sub-mm precision after averaging) at a distance of ~ 2 m. One important result was the demonstration of a difference in walk error behaviour between MOSFET and avalanche BJT-based laser pulse transmitters. The practicability of an integrated CMOS AP detector in sub-ns laser rangefinding was also studied. / Tiivistelmä Työn tavoitteena oli kehittää CMOS-vastaanotin valon kulkuaikamittaukseen perustuvaan laseretäisyysmittariin, joka hyödyntää ”gain-switching”-tekniikalla toimivan laserdiodin (~ 1 nJ energia) tuottamia alle nanosekuntiluokan laserpulsseja. Väitöskirja tutkii myös valovastaanotinkomponenttien käyttökelpoisuutta alle nanosekuntiluokan laserpulsseja hyödyntävässä laseretäisyysmittauksessa. Työssä tutkitaan myös laserdiodilähettimen elektroniikan vaikutusta alle nanosekuntiluokan laserpulssien muotoon ja lopulta niiden vaikutusta systemaattiseen ajoitusvirheeseen laseretäisyysmittauksessa. Väitöskirja esittelee suunnitellun valopulssin kulkuaikamittaukseen perustuvaan laseretäisyysmittariin soveltuvan integroidun vastaanotinkanavan IC-piirin. Se on toteutettu halvalla, kulutuselektroniikkaan soveltuvalla CMOS tekniikalla (0,18 μm) ja se perustuu lineaariseen vastaanottimeen ja nousevan reunan ilmaisuun. Vastaanottimen mitattu systemaattinen ajoitusvirhe on ~ 500 ps (4,5 cm matkassa) 1:21 000 signaalivoimakkuuden vaihtelualueella. Vastaanottimesta mitattu laseretäisyysmittarin kertamittaustarkkuuteen vaikuttava nousevan reunan satunnainen ajoitusepävarmuus oli ~ 12 ps (1.6 mm matkassa) signaalikohinasuhteella > 200. Lisäksi tässä työssä toteutettiin kehitettyä vastaanotin-IC piiriä hyödyntävä valopulssin kulkuaikamittaukseen perustuva etäisyysmittari, jolla kyettiin havainnollistamaan mahdollisuutta mitata pientä tärinää kaukaisessa passiivisessa kohteessa. Tutkalla onnistuttiin havainnoimaan 1,5 mm vaihteluväliltään olevaa 10 Hz tärinä ~ 2 m etäisyydellä olevasta kohteesta. Väitöskirjan yksi tärkeä tulos oli havainnollistaa systemaattisessa ajoitusvirheessä havaittava ero MOSFET-transistoriin ja vyöry-BJT-transistoriin perustuvan laserpulssilähettimen välillä. Integroidun CMOS AP vastaanotinkomponentin käyttökelpoisuus alle nanosekuntiluokan laseretäisyysmittauksessa tutkittiin myös.

Page generated in 0.0505 seconds