• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and Mechanistic Insights into Regulation of RGS17 and PLCepsilon

Monita Sieng (6901259) 15 August 2019 (has links)
<p>Recent advances in structural biology and biochemistry have identified proteins downstream of G protein-coupled receptors (GPCRs) as promising drug targets. These proteins are highly regulated to ensure proper physiological responses from extracellular stimuli. Dysregulation of these signaling enzymes can have detrimental consequences, including cardiovascular disease and cancer. Understanding how these proteins are regulated from a structural and biochemical standpoint can therefore be exploited to develop new therapeutics.</p> <p>In this work, the molecular mechanism of regulation of two different proteins downstream of GPCRs is investigated. The first protein, Regulator of G Protein Signaling 17 (RGS17), is involved in numerous processes throughout the body, including the development and progression of lung cancer. This work presents the crystal structure of RGS17 bound to Ca<sup>2+</sup>. Ca<sup>2+</sup> was found to bind to the same site as the predicted Ga binding surface and increases interactions between RGS17 and Ga<sub>o</sub>. Therefore, Ca<sup>2+</sup> positively regulates RGS17, supporting a mechanism in which Ca<sup>2+</sup> increases the GTPase activating function of the RZ-family of RGS proteins to ultimately downregulate Ca<sup>2+</sup> signaling.</p> <p>The second protein, phospholipase Ce (PLCe), has been implicated in cardiac hypertrophy through its production of second messengers. This process is regulated by the small GTPase Rap1A. This work presents insight into the molecular mechanism of Rap1A-dependent activation of PLCe, in which four conserved, hydrophobic residues on the surface of the RA2 domain of PLCe play an essential role. Furthermore, small angle X-ray scattering studies show that binding of Rap1A induces conformational changes in PLCe, resulting in a more compact activated complex. This supports a mechanism in which Rap1A is an allosteric activator of PLCe, inducing conformational changes in PLCe that increase lipid hydrolysis by relieving autoinhibitory interactions and/or by promoting interactions with the cell membrane.</p>
2

Role of Rap1a in AGE/RAGE-mediated Signaling in Type II Diabetes Mellitus

Zhao, Jia 08 December 2017 (has links)
Type II diabetes mellitus (TIIDM) causes multiple complications under chronic hyperglycemia. Long term persistent exposure to elevated glucose conditions is considered one of the major factors for diabetic complications. Pathologically, mechanical and biochemical stimuli will induce a signaling cascade in cardiac fibroblasts, which causes myocardial fibrosis and leading to ventricular stiffness. Non-enzymatically, high levels of glucose can react with long-lived proteins, such as collagen to form advanced glycation end-products (AGEs). AGEs have been shown to be associated with many of the diabetic cardiovascular complications due to their interaction with the receptor for AGE (RAGE). AGE/RAGE activation stimulates the secretion of growth factors, promotes increased collagen production that leads to tissue fibrosis, and increased RAGE expression. The purpose of this study is to identify the role for Rap1a in regulating fibrosis under TIIDM conditions, as well as to offer insight into the AGE-RAGE signaling cascade definition for cardiovascular extracellular matrix remodeling under TIIDM condition. To test our hypothesis, both loss-ofunction and gain-ofunction based experiments were performed to manipulate Rap1a protein expression in AGE-RAGE mediated fibrosis. Also, we down-regulated the activity of downstream molecules in the AGE-RAGE signaling cascade, such as protein kinase C-ζ (PKC-ζ) and ERK1/2 by specific inhibitor treatments, to test their positions in AGE-RAGE mediated fibrosis pathway. To perform our experiment in vivo, we used high fat diet to feed Rap1a heterozygous mice in order to build a Rap1a heterozygous diabetic animal model. Our results showed that Rap1a protein plays a key role in AGE-RAGE signaling pathway under TIIDM, and changes in Rap1a activity altered the signaling pathway. Also, we found that PKC-ζ is the upstream player relatively to ERK1/2, and Rap1a is the upstream player for both PKC-ζ and ERK1/2. By understanding the role Rap1a played in AGE-RAGE signaling cascade, a new molecular mechanism is found possibly to reduce the cardiac fibrosis in TIIDM patients.
3

Cell signaling guides morphogenesis: roles for Eph-Ephrin signaling in sea urchin morphogenesis.

Krupke, Oliver A. 13 August 2015 (has links)
The role that signaling molecules play during morphogenesis and their interactions is a field of intense study and the sea urchin represents a facile system to study these aspects of development in the early embryo. In many instances, the S. purpuratus genome contains relatively simple receptor-ligand signaling systems compared to vertebrate counterparts and this provides interesting opportunities to study their diversity of function during the morphogenetic events that shape the embryo. The Eph-Ephrin signaling components are an excellent example of this and they are represented by dozens of members in the vertebrate system with developmental functions that include axon guidance, cell migration and tissue segregation. In contrast, the sea urchin genome contains a single Eph receptor and a single Ephrin ligand and by interacting with different effectors of signal transduction, this simple, bipartite system can fulfill a variety of functional roles during morphogenesis. Studying the function of Eph-Ephrin signaling in the sea urchin embryo, I have revealed two distinct morphogenetic movements in which Eph-Ephrin signaling is necessary; apical constriction of ciliary band cells and pigment cell migration. In both examples, a functionally relevant Ephrin gradient establishes spatial information in the developing tissues, producing a reaction from cells expressing the Eph receptor. In the case of pigment cells, the distribution of migrating cells is affected and in the case of ciliary band cells, apical constriction occurs. The different outcomes of Eph-Ephrin signaling in these two tissues exemplifies signaling components communicating spatial information and initiating morphogenetic programs with outcomes dependent on cellular context. Furthermore, I have identified downstream components of Eph-Ephrin signaling that have necessary functions in both models, illustrating how different cellular programs can be induced by the same signaling iii iv components. My research contributes to understanding fundamental aspects of how complex 3 dimensional tissues arise from the genes and regulatory elements encoded in metazoan genomes. / Graduate

Page generated in 0.0235 seconds