Spelling suggestions: "subject:"rapid solidification"" "subject:"vapid solidification""
41 |
Influência da velocidade de resfriamento nas temperaturas de transformação e na tendência de amorfização em fitas Ti-Cu-Ni. / Influence of cooling rate in the transformation temperatures and the glass forming ability in Ti-Cu-Ni ribbons.RAMOS, Alana Pereira. 04 April 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-04-04T20:26:12Z
No. of bitstreams: 1
ALANA PEREIRA RAMOS - DISSERTAÇÃO PPG-CEMat 2014..pdf: 2592489 bytes, checksum: 5e82ab454a76e1050981da9019ce8fec (MD5) / Made available in DSpace on 2018-04-04T20:26:12Z (GMT). No. of bitstreams: 1
ALANA PEREIRA RAMOS - DISSERTAÇÃO PPG-CEMat 2014..pdf: 2592489 bytes, checksum: 5e82ab454a76e1050981da9019ce8fec (MD5)
Previous issue date: 2017-08-07 / As ligas ternárias de Ti-Cu-Ni com memória de forma são conhecidas por
apresentarem transformação de fase característica e propriedades semelhantes
às ligas binárias Ti–Ni. Estudos realizados com ligas ricas em cobre mostraram
que a adição de cobre nas ligas de Ti-Ni reduz a histerese de resposta do efeito
de memória de forma e aumenta a TFA (tendência de formação de fase amorfa)
ainda pouco estudada com altas porcentagens de cobre. Diante disso, este
trabalho teve como objetivo avaliar a influência da velocidade de resfriamento nas
temperaturas de transformação e na tendência de amorfização em fitas de Ti-CuNi
resfriadas rapidamente. Para tanto, foram produzidas duas fitas Ti01 (Ti 43,5 Cu
37,8 Ni 18,7) e Ti02 (Ti 58,4 Cu 25,6 Ni 16,0) pelo processo melt spinning, variando-se a
velocidade linear da roda em 21 m/s e 63 m/s. As amostras foram caracterizadas
utilizando-se técnicas DSC, DR-X, RET e MO. Após essa caracterização pode-se
afirmar que a técnica de melt spinning permite a produção de fitas muito finas, da
ordem de micrômetros, em apenas uma etapa de processamento, assim como
também foi possível a produção de fitas amorfas, do sistema Ti-Cu-Ni, sem
nenhuma fase cristalina como observado na fita Ti01 e Ti 02 obtidas com
velocidade linear de 63m/s. O tratamento térmico foi suficiente para remover
todos os defeitos produzidos pelo processo de solidificação rápida e produzir um
rápido crescimento de grão, favorecendo o aumento das temperaturas de
transformação martensíticas e austeníticas. / Ternary alloys with shape memory Ti-Cu-Ni are known to submit a characteristic
phase transformation and properties similar to the and Ti-Ni binary alloy . Studies
with rich-copper alloys showed that the addition of copper in alloys Ti-Ni reduces
the hysteresis response of the shape memory effect and increases the TFA
(tendency to form amorphous phase) still little studied with high percentages of
copper. Thus, this study aimed to evaluate the influence of cooling rate on the
transformation temperatures and on the tendency of Cu-Ni-Ti ribbons rapidly
solidified. Therefore, two ribbons TI01 (Ti 43.5 Cu 37.8 Ni 18.7) and Ti02 (Ti 58.4 Cu 25.6
Ni 16.0) were produced by melt spinning process, varying the wheel linear velocity
21 m/s and 63 m/s. The samples were characterized using DSC, X-DR, RET and
MO and techniques. Melt spinning technique allows the production of very thin
ribbons of the order of microns, in one processing step, as it was also possible to
produce amorphous ribbons, the system Ti-Cu-Ni, without crystalline phase as
observed in TI01 and 02 Ti02 with linear velocity of 63m/s. The heat treatment was
sufficient to remove all defects produced by rapid solidification process and
produce a rapid grain growth, favoring the increase of temperatures of martensitic
and austenitic transformation.
|
42 |
Korrelation mikrostruktureller und mechanischer Eigenschaften von Ti-Fe-LegierungenSchlieter, Antje 04 July 2012 (has links)
The effect of solidification conditions on microstructural and mechanical properties of eutectic TiFe alloy cast under different conditions was examined. Samples exhibit different ultrafine eutectic structures (β-Ti(Fe) solid solution + TiFe). Different cooling conditions lead to the evolution of ultrafine eutectic oval-shaped colonies or elongated lamellar colonies with preferred orientation. Isotropic as well as anisotropic mechanical properties were obtained. Alloys exhibit compressive strengths between 2200 and 2700 MPa and plastic strains between 7 and 19 pct. in compression.:Inhaltsverzeichnis
1 Einleitung 1
2 Grundlagen 9
2.1 Titan und Titan-Legierungen. . . . . . . . . . . . . . 9
2.2 Das binäre System Ti-Fe. . . . . . . . . . . . . .11
2.3 Phasendiagramm, Gleichgewichts-/
Nichtgleichgewichtsprozesse. . . . . . . . . . . . . .11
2.3.1 Kristallstrukturen der eutektischen Phasen . . . . . . . . . . . . . . 14
2.3.2 Klassifizierung von Phasengrenzflächen. . . . . . . . . . . . . .15
2.3.3 Eigenschaften intermetallischer Phasen mit B2-
Struktur. . . . . . . . . . . . . . 17
2.4 Erstarrung von Schmelzen . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Das eutektische System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Metastabile Legierungen . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Keimbildung von eutektischen Systemen . . . . . . . . . . . . . . . 26
2.5.3 Klassifizierung eutektischer Gefüge. . . . . . . . . . . . . . . . . . 27
2.5.4 eutektische Systeme . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.5 Bestimmung der Erstarrungsgeschwindigkeit nach Jackson und
Hunt. . . . . . . . . . . . . . 31
2.6 Einfluss des Gefüges auf die Verformungsmechanismen . . . . . . 32
2.7 Prozessrouten zur Herstellung nanostrukturierter/ultrafeinkörniger
(ns/ufk) Materialien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Duktilität und Festigkeit ns/ufk Materialien (Stand der
Forschung) . . . . 39
3 Werkstoffauswahl und Probenherstellung. . . . . . . . . . . . . . 46
3.1 Werkstoffauswahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Probenherstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.1 Herstellung der Vorlegierung im Lichtbogenofen . . . . . . . . 48
3.2.2 Herstellung der Legierungen nach der Bridgeman-Technik . . 49
3.2.3 Herstellung der Ti-Fe- bzw. Ti-Fe-Sn-Legierungen in
verschiedenen Rascherstarrungsanlagen . . . . . . . . . . . . . 50
3.2.3.1 Stabherstellung Kalttiegelanlage . . . . . . . . . . . . . . 52
3.2.3.2 Stabherstellung Kipptiegelanlage . . . . . . . . . . . . . . 52
3.2.3.3 Stabherstellung Differenzdruckgussanlage . . . . . . . 53
4 Charakterisierungsmethoden. . . . . . . . . . . . . . 55
4.1 Chemische Analytik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.1 Nasschemische Analyse . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Nichtmetallanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Röntgendiffraktometrie (XRD) . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Mikroskopische Untersuchungen . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Lichtmikroskopie (LM) . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Rasterelektronenmikroskopie (REM) . . . . . . . . . . . . . . . . 59
4.3.3 Transmissionenelektronenmikroskopie (TEM) . . . .. . . . . . 61
4.4 Mechanische Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Härte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Druckversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.3 Zugversuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.4 In situ Druck- und in situ Zugversuch . . . . . . . . . . . . . 64
4.5 Ultraschallmessung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Dilatometermessung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5 Einphasige betafi-Ti(Fe)- und TiFe IP-Legierungen. . . . . . . . . . . . . 68
5.1 Die fibeta-Ti(Fe)-Legierung . . .. . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Die intermetallische Phase TiFe . . . . . . . . . . . . . . . . . . . . . . . . 82
6 Gerichtet erstarrte Ti70,5Fe29,5-Legierung . . . . . . . . . . . . . .92
7 Rasch erstarrte Ti70,5Fe29,5-Legierung . . . . . . . . . . . . . . 99
7.1 Gefüge der rasch erstarrten Ti70,5Fe29,5-Legierung . . . . . . . . 99
7.2 Mechanische Charakterisierung der rasch erstarrten Ti70,5Fe29,5-
Legierung . ..120
7.2.1 Druckversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.2 Bestimmung der elastischen Konstanten . . . . . . . . . . . . 128
7.2.3 Zugversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2.4 In situ Druck- und in situ Zugversuche . . . . . . . . . . . . . 134
8 Rasch erstarrte Ti-Fe-Sn-Legierung . . . . . . . . . . . . . .138
8.1 Gefüge der Ti-Fe-Sn-Legierung . . . . . . . . . . . . . . . . . 139
8.2 Mechanische Eigenschaften der Ti-Fe-Sn-Legierung . . . . . . . . . 143
9 Zusammenfassung und Ausblick . . . . . . . . . . . . . . 146
Abbildungsverzeichnis I
Tabellenverzeichnis VIII
Literaturverzeichnis X
Anhänge XXII
A Das Ti-Fe-Phasendiagramm nach [1] XXII
B Dilatometermessung XXIII
C Die elastischen Konstanten der Ti-Fe- und Ti-Fe-Sn-Legierung XXIV
D XRD-Messungen (Transmission) XXV
E Bestimmung des Fe-Gehaltes in Abhängigkeit von der Gitterkonstanten
a0 XXVIII
Eidesstattliche Erklärung XXIX
Danksagung
|
43 |
Studies On Rapidly Solidified Al-Mn-Cr-Si And Al-Fe-V-Si Alloys : Processing - Microstructure CorrelationSrivastava, Avanish Kumar 07 1900 (has links) (PDF)
No description available.
|
Page generated in 0.0918 seconds