• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 355
  • 228
  • 61
  • 47
  • 23
  • 19
  • 10
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 912
  • 912
  • 208
  • 205
  • 162
  • 159
  • 122
  • 111
  • 88
  • 86
  • 75
  • 71
  • 71
  • 64
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Reciprocity between Emission and Absorption for Rare Earth Ions in Glass

Martin, Rodica M. 28 April 2006 (has links)
The power of the McCumber theory [D. E. McCumber, Phys. Rev. 136, A954-957 (1964)] consists in its ability to accurately predict emission cross section spectra from measured absorption, and vice versa, including both absolute values and spectral shapes. While several other theories only allow the determination of integrated cross sections, the McCumber theory is unique in generating the spectral shape of a cross section without any direct measurements regarding that cross section. The present work is a detailed study of the range of validity of the McCumber theory, focussing particularly on those aspects that most critically affect its applicability to transitions of rare earth ions in glasses. To analyze the effect of the spectral broadening on the accuracy of the technique, experiments were performed at room and low temperature. The theory was tested by comparing the cross sections calculated using the McCumber relation with those obtained from measurements. At room temperature, a number of ground state transitions of three different rare earth ions (Nd, Er and Tm) in oxide and fluoride glass hosts have been studied. Special attention was paid to the consistency of the measurements, using the same experimental setup, same settings and same detection system for both absorption and fluorescence measurements. Other aspects of the experimental procedure that could generate systematic errors, like fluorescence reabsorption and baseline subtraction uncertainties in the absorption measurements, were carefully investigated. When all these aspects are properly accounted for, we find in all cases an excellent agreement between the calculated and the measured cross section spectra. This suggests that the McCumber theory is not limited to crystalinne hosts, but describes quite well the reciprocity between emission and absorption for the broader transitions of rare earths in glassy hosts. This good agreement does not hold, however, for the low temperature results. The distortion observed in this case follows the theoretically predicted behavior, and corresponds to the amplification of the gaussian wings that describes the inhomogeneous type of broadening. Our results suggest that the McCumber theory must be used with caution for temperatures below 200 K.
262

Magnetic Mineralogy of Nb-bearing Carbonatites from Oldoinyo Dili (Tanzania) / Magnetisk mineralogi av Nb-innehållande karbonatiter från Oldoinyo Dili (Tanzania)

Frejd, Julia January 2021 (has links)
Niobium (Nb) and Rare Earth Elements (REE’s) have in recent years received considerable attention because of their importance to the modern technical industry, and more specifically the enhanced sustainability that comes with them. The main source for Nb and REE’s on Earth are carbonatites and associated alkaline silicate rocks. This report examines the magnetic properties of rocks from the Oldoinyo Dili carbonatite complex in northern Tanzania. Previous workers have suggested a link between the Fe-bearing mineralogy and the formation of Nb-mineralizations at Oldoinyo Dili. This hypothesis is further examined in this report by combining detailed petrographic observations and withnew measurements of magnetic susceptibility. The aim is to see if any correlation exists between occurrence of Nb-mineralizations and the types of Fe-minerals present at Oldoinyo Dili. Based on the magnetic susceptibility measurements, at least two different species of Fe-minerals arefound in the examined samples. These are characterized by different magnetic trends during heating/cooling and also by their separate Curie temperatures (Tc). In combination with the petrographic observations these minerals are interpreted to be magnetite (Fe2O4) with Tc ~580°C, and a mineral that most likely represents a solid solution between ilmenite (FeTiO3) and hematite (Fe2O3) with Tc ~300°C. Here, no clear link between the type of opaque mineral(s) present and the total Nb content of the carbonatites can be conclusively determined based on the petrography and the magnetic measurements alone. Although the results of this report provide an important first step towards understanding the relationship between Nb-mineralizations and the magnetic mineralogy at Oldoinyo Dili, more detailed analyses of the mineral chemistry is a necessity to fully understand their complex relations and the specific conditions under which they formed. / Niob (Nb) och sällsynta jordartsmetaller (REE’s) har på senare år fått stor uppmärksamhet för sin betydelse för den moderna tekniska industrin, och specifikt för den förhöjda hållbarhet som de bidrar med. Den huvudsakliga källan till Nb och REE’s på jorden är karbonatiter och associerade alkalisilikater. Denna rapport undersöker de magnetiska egenskaperna för karbonatit-komplexet Oldoinyo Dili i norra Tanzania. Forskare har tidigare anat att det finns en koppling mellan Fe-bärande mineralogi och bildandet av Nb-mineraliseringar vid Oldoinyo Dili. Denna hypotes undersöks vidare i denna rapport genom att kombinera detaljerade petrografiska observationer med nya mätningar av magnetisk susceptibilitet. Syftet är att undersöka om det finns någon korrelation mellan förekomst av Nb-mineraliseringar och de typer av järnmineral som finns vid Oldoinyo Dili. Baserat på de genomförda magnetiska susceptibilitets-mätningarna så finns det åtminstone två olika sorters järnmineral i de undersökta proverna. De karaktäriseras av olika magnetiska trender vid upphettning/nedkylning och även av sina olika Curietemperaturer (Tc). Kombinerat med petrografiska observationer uttolkas att dessa mineral är magnetit (Fe2O4) med Tc ~580°C, samt en mineral som troligen är en solid solution av ilmenit (FeTiO3) och hematit (Fe2O3) med Tc ~300°C. Det går inte att senågon tydlig koppling mellan förekommande opaka mineral och det totala Nb-innehållet i karbonatiterna med säkerhet enbart utifrån petrografin och de genomförda magnetiska mätningarna. Resultaten av denna rapport utgör ett bra första steg mot att förstå relationen mellan Nb-mineraliseringar och den magnetiska mineralogin för Oldoinyo Dili, men mer detaljerade analyser av mineralkemin är nödvändigt för att till fullo förstå de komplexa förhållanden som råder vid bildning av dessa.
263

Studies Of Multiferroic Oxides

Serrao, Claudy Rayan 02 1900 (has links) (PDF)
This thesis presents the results of investigations of the synthesis, structure and physical properties of multiferroic materials. Multiferroics are materials in which two or all three of ferroelectricity, ferromagnetism and ferroelasticity occur in the same phase. Such materials have the potential applications of their parent materials, as well as new ones because of the interaction between the order parameters. The thesis is organized into four sections. Section 1 gives an overview of multiferroics, explaining the origin of mul-tiferroicity , occurrence of magnetoelectric coupling, their possible technological ap-plications and the challenges involved. Section 2 gives the scope of the investigations. The specific objectives of the present research on yttrium chromite, heavy rare earth chromites, solid solutions of yttrium chromite, rare earth manganites doped with alkaline earth metals, charge-ordered rare earth ferrites and indium manganite are outlined. Experimental aspects of the work carried out are discussed in section 3. It gives details of the experimental set up and the basic operation principles of various structural and physical characterizations of the materials prepared. In section 4, results of the investigations are discussed. Magnetic and di-electric properties of yttrium chromite (YCrO3), heavy rare earth chromites and YCr1-xMnxO3 are reported in section 4.1. These materials show canted antiferro-magnetic behavior below the Nel transition temperatures and dielectric transitions at high temperatures. Role of local non-centrosymmetry is discussed based on high-resolution neutron powder diffraction data. In 4.2 we discuss the results of charge-ordered rare earth ferrites which show good magnetoelectric effect. Magnetic, dielectric and magneto-dielectric properties of YCr1-xMnxO3 (Ln = rare earth) are discussed in 4.3. These materials show magneto-dielectric effect. In 4.4 we discuss the near normal incidence far infrared reflectivity spectra of a single crystal of TbMnO3, in the spectral range of 50cm−1 to 700 cm−1 from 10 K to 300 K. Finally in 4.5, magnetic and dielectric properties of bulk and thin films of indium manganite are discussed.
264

Infrared lasers based on ho3+:kre(wo4)2 crystals with tm3+or yb3+ as sensitizers

Jambunathan, Venkatesan 18 May 2011 (has links)
Laseres de estado sólido que operan en la región espectral de seguridad ocular alrededor de los 2 micrómetros (2µm) son de elevado interés en la actualidad debido a su potencial aplicación en los campos de la medicina, teledetección remota y como fuentes de bombeo en osciladores ópticos paramétricos (OPOs) para conversión en el infrarrojo medio. La transición láser en las 2 µm es posible en los iones de tulio (Tm) ligeramente por debajo de las 2 µm y en iones de holmio (Ho) ligeramente por encima de las 2 µm. La generación láser en iones de Tm es relativamente simple con la utilización de láseres de diodo como fuentes de bombeo, sin embargo, los láseres basados en Ho se han conseguido tradicionalmente en el pasado mediante el codopaje con Tm o mediante bombeo directo del nivel emisor del Ho. Recientemente, diodos láser que operan a 1.9 µm han aparecido en el mercado con buena eficiencia y con alto potencial para el escalado en potencia de los láseres de Ho. Los láseres de Ho son más apropiados que los láseres de Tm especialmente para aplicaciones médicas por dos razones: La longitud de onda láser ligeramente por encima de las 2 µm, donde el agua (mayor componente del cuerpo humano) presenta una ligera menor absorción que la típica longitud de onda láser del Tm, hace que el láser penetre más en el tejido humano. La segunda razón es que los láseres de Ho pueden operar en régimen pulsado generando mayores energías por pulso que los láseres de Tm debido al mayor tiempo de vida del nivel emisor 5I7 y las aplicaciones médicas requieren por lo general régimen pulsado para evitar daño térmico del tejido. Numerosos óxidos y fluoruros cristalinos han demostrado ser adecuadas matrices para Ho, sin embargo, poca atención se ha puesto en los dobles tungstatos cristalinos de fase monoclínica, de fórmula química KRE(WO4)2, brevemente KREW, donde RE = Y, Gd y Lu conocidos por ser matrices láser muy eficientes para la generación láser a potencias intermedias. Estos cristales anisotrópicos presentan una elevada sección eficaz de absorción y emisión cuando son dopados con iones lantánidos y especialmente para ciertas polarizaciones. Considerando el potencial del Ho y las buenas propiedades de KREW, nuestro trabajo se centra en la investigación de las prestaciones láser en cristales de KREW dopados con Ho utilitzando tanto Tm o Yb como iones sensibilizadores y utilizando fuentes de bombeo emitiendo a 1.9 µm que permiten la excitación directa del nivel emisor. En esta tesis, presentamos los resultados basados en el crecimiento cristalino de monocristales de Ho:KREW, codopajes (Ho,Tm) y (Ho,Yb):KLuW a diferentes concentraciones de Ho, su caracterización en términos de estructura, composición y espectroscopia y finalmente la generación láser alrededor de 2.1 µm. / Eye-safe solid-state lasers that operate in the 2µm spectral range are the subject of interest in the present years because of their potential applications in the field of remote sensing, medicine and as a pump source for Optical Parametric Oscillators (OPOs). Laser transitions around 2 µm are possible in the trivalent lanthanide ions Tm3+ (Tm) (slightly below 2 µm) and Ho3+ (Ho) (slightly above 2 µm). Laser generation in Tm ions is easily achieved with comfortable diode pump sources, however, Ho lasers have usually been achieved in the past either by co-doping the active medium with Tm or by direct pumping of the Ho ions with Tm lasers. Recently, relatively cheap diodes emitting around 1.9 µm are in the market to realize Ho lasers with great potential for power scaling. Ho lasers are more suitable than Tm lasers especially for medical applications because of two reasons: The laser wavelength is slightly above 2µm, where water (main component of human tissue) shows slightly less absorption than the typical wavelength of Tm leading to a deeper penetration in human tissue. The second reason is that Ho lasers can operate in pulsed regime delivering higher energies than Tm lasers due to the longer lifetime of the emitting level 5I7 and medical applications are required to be generally in pulsed regime to avoid thermal damage of human tissue. Many oxide and fluoride crystals were shown to be suitable host for Ho, however little attention was paid to the monoclinic potassium rare earth double tungstate crystal, shortly KRE(WO4)2 or KREW, where RE= Y, Gd, Lu known to be very efficient rare earth solid state hosts for generating intermediate power levels. These anisotropic crystals exhibit very high absorption and emission cross sections when doped with lanthanide ions and especially for selected polarizations. Considering the potentialities of Ho and good properties of KREW, our work focuses in the investigation of the laser performances of a Ho doped KREW either by using Tm or Yb as sensitizers and by using in-band pump sources emitting around 1.9 µm, where the development of compact solid state infrared laser emitting at 2.1 µm for intermediate power levels is followed. Here, in this thesis, we present the results based on growth of single doped Ho:KREW, co-doped (Ho,Tm) and (Ho,Yb):KLuW crystals of several doping concentrations, their characterisation in terms of structure, composition and spectroscopy and finally dedicated for the laser generation around 2.1 µm from these materials, which was highly successful.
265

Fônons nos sistemas RVO4 e La1-xCexPO4 / Phonons in the RVO4 and La1-xCexPO4 systems

Santos, Clenilton Costa dos January 2006 (has links)
SANTOS, Clenilton Costa dos. Fônons nos sistemas RVO4 e La1-xCexPO4. 2006. 69 f. Dissertação (Mestrado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2006. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2014-11-03T18:45:53Z No. of bitstreams: 1 2006_dis_ccsantos.pdf: 1277913 bytes, checksum: 6a1a955f62dd2dce85a6a88fae471dd9 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-11-03T19:51:52Z (GMT) No. of bitstreams: 1 2006_dis_ccsantos.pdf: 1277913 bytes, checksum: 6a1a955f62dd2dce85a6a88fae471dd9 (MD5) / Made available in DSpace on 2014-11-03T19:51:52Z (GMT). No. of bitstreams: 1 2006_dis_ccsantos.pdf: 1277913 bytes, checksum: 6a1a955f62dd2dce85a6a88fae471dd9 (MD5) Previous issue date: 2006 / In this work we present a Raman investigation of RVO4 (where R = Sm, Ho, Yb and Lu) and La1-xCexPO4 (where x = 0,00, 0,04, 0,16, 0,22, 0,32 and 1,00) compounds. Polarized Raman scattering measurements were carried out in the RVO4 compounds to obtain a better description of the room temperature phonons than those previously reported in literature. We observe that the frequencies of most of phonons increase with increasing atomic number (Z) of R. This behavior results from the lattice contraction when R goes from La to Lu. On the other hand, due to their dimensions and shape, unpolarized Raman scattering was used to investigate the room temperature phonon spectra of La1-xCexPO4 compounds. No appreciable changes were observed, indicating that the LaPO4 lattice is not substantially modified by Ce doping. However, some extra or additional phonons were observed. The origin of these modes comes probably from the activation of infrared modes due to the breakdown of symmetry rules. / Neste trabalho apresentamos uma investigação dos compostos RVO4 (onde R = Sm, Ho, Yb e Lu) e La1-xCexPO4 (onde x = 0,00, 0,04, 0,16, 0,22, 0,32 e 1,00) através da técnica de espalhamento Raman. Medidas de espalhamento Raman polarizadas foram realizadas nos compostos RVO4 para obter uma descrição dos fônons a temperatura ambiente melhor do que aquelas publicadas anteriormente na literatura. Observamos que a freqüência da maioria dos fônons aumenta com o aumento do número atômico (Z) de R. Este comportamento resulta da contração da rede quando R vai de La até Lu. Por outro lado, devido às dimensões e forma dos compostos La1-xCexPO4, medidas de espalhamento Raman não-polarizadas foram usadas para obter seus espectros de fônons a temperatura ambiente. Nenhuma mudança apreciável foi observada, indicando que a rede do composto LaPO4 não sofre modificações consideráveis por causa da dopagem de Ce. Contudo alguns fônons extras ou adicionais foram observados. A origem desses modos advém, provavelmente, da ativação de modos infravermelho causadas por quebras de regras de simetria.
266

Thesis_Perspective and Dynamic life cycle assessment of critical materials_Tai-Yuan.pdf

Tai-Yuan Huang (13918935) 01 December 2022 (has links)
<p>Critical materials are crucial to the wide deployment of clean energy technologies and advanced technology such as electric vehicles (EVs), smartphones, high-efficiency lighting, and wind turbines. Particularly, rare earth elements (REEs) and lithium are key elements for clean energy and EVs. However, higher REEs and lithium demand for clean energy transformation, extreme supply reliance on certain area exports, and severe environmental issues during mining and processing cause uncertainty for future clean energy and transportation development. Our study aims to develop dynamic LCA with scenario analysis to simulate the future possible sustainability pathways for critical materials for stakeholders and apply life cycle assessment (LCA) to evaluate the latest REEs and lithium extraction and recycling technologies. Dynamic LCA (DLCA) integrates the temporal datasets to predict the future environmental impact of a product. The databases are mainly from Ecoinvent and Critical Materials Life Cycle Assessment Tool (CMLCAT). Python package Brightway2 and Temporalis are used to simulate the DLCA.</p> <p>The study of DLCA on the REEs industry reveals the future predictive REEs environmental impact trend, providing a clear policy strategy to reach sustainability goals for stakeholders. The results show that shifting REEs resources from China to Australia and increasing the recycling rate are key factors in reducing environmental impact in the future. Considering the degradation of rare earths ore and storage depletion in China, such as the decreased production of heavy REEs from Ion adsorption clay in southern China, exploration, and inclusion of potential REEs production projects will be the possible sustainable way in the following decade. </p> <p>LCA of RE recovery from room temperature ionic liquid (RTIL) electrochemical process helps us explore the benefits of recycling RE from the e-waste. Although RTIL contributes a higher impact on ozone depletion and global warming, close-loop recycling RTIL could reduce substantial environmental impact. Lithium recovery from geothermal brine provides the great source for fulfilling the domestic demand of the U.S. Compared to the conventional Li compounds production, this method is efficient and has 25-41% lower global warming potential. The government, researchers, and industry could benefit from this study for exploring advantage and drawback strategies for the future environmental footprint of NdFeB magnet production and identifying environmental hotspots of the latest recycling and extraction process of REEs and lithium.</p>
267

Chemistry of brine in an unconventional shale dominated source bed understanding water- organic material-mineral interactions during hydrocarbon generation

Alvarez, Helder Ivan January 1900 (has links)
Master of Science / Department of Geology / Sambhudas Chaudhuri / The exploration and development of unconventional shale plays provide an opportunity to study the hydrocarbon generation process. These unconventional plays allow one to investigate the interactions between the fluid, mineral, and organic material that occur in a hydrocarbon-generating source bed, before any changes in composition that may occur during secondary migration or post migration processes. Previous studies have determined the chemical constituents of formation waters collected from conventional reservoirs after secondary migration has occurred. This investigation targets formation waters collected from the Woodford shale that acts as both source and reservoir, therefore samples have yet to experience any changes in composition that occur during secondary migration. This investigation focuses on the major element and trace element chemistry of the formation water (Cl, Br, Na, K, Rb, Mg, Ca, Sr, and Rare Earth Elements), which has been compared to chemical constituents of the associated crude oil and kerogens. Analytical data for this investigation were determined by the following methods; Ion Chromatography, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). The information is used to assess the presence of different sources of water that constitute the formation water, and also to investigate interaction between different minerals and formation waters within the source beds. The formation water data also yields new insights into compartmentalization of oil-gas rich zones within the source beds.
268

Random magnetic anisotropy effects in glasses based on Gd₆₅Co₃₅

Othman, Fauziah. January 1985 (has links)
Call number: LD2668 .T4 1985 O83 / Master of Science
269

Feasibility of thorium extraction from a solid monazite matrix utilizing supercritical CO2 with TBP and HFA as chelates / Bruce De Cliffordt Mastoroudes

Mastoroudes, Bruce De Cliffordt January 2014 (has links)
With current energy demands globally and locally, nuclear energy remains one of the top competitors for cleaner and sustainable energy. The nuclear industry requires more inherent safety and proliferation resistance in reactor design. Thorium has therefore been identified as a possible fuel for future nuclear reactors that can comply with these requirements. However current extraction techniques are expensive, time consuming and generate large quantities of hazardous waste. A possible alternative to conventional solvent extraction of thorium is SFE (Supercritical Fluid Extraction). A monazite sample from the Steenkampskraal mine was investigated using SEM (Scanning Electron Microscope) analysis methods to determine the distribution of thorium in the grains that could potentially complicate the effectiveness of the SFE extraction method if zoning is present. The results show a homogeneous distribution with no discernable zonation in the grains. The concentration of Th, Ce and Nd was determined by quantitative MPA (Micro Probe Analysis). The results obtained from the MPA point analysis on several grains show average Th, Ce and Nd concentrations of 6.5 wt. %, 24.1 wt. % and 9.7 wt. % respectively. The extraction of Th+4 from a filter paper was conducted to verify the extraction procedure and extractability of transition elements employing SFE. The extraction was conducted using supercritical CO2 and methanol as co-solvent with TBP (Tributyl Phosphate) and HFA (Hexafluoroacetylacetone) added in situ as chelates. ICP-MS results for the Th+4 extraction procedure showed extraction efficiency of 53 % compared to 83 % in literature (Kumar et al. 2009). This marked difference in extraction efficiency is attributed to ineffective trapping methods employed and lack of prior maintenance and support on the extraction apparatus. Subsequently all further extracted samples of Th from monazite were tested using XRF analysis methods. Due to the lack of prior maintenance on the extraction apparatus several technical breakdowns were encountered and addressed from a mechanical engineering standpoint. The operational effectiveness of the modified apparatus was verified through the extraction of marula seed oil and compared with another supercritical fluid (SF) extractor to show 50 % extraction efficiency in each case. A review of the literature indicated that the crystal chemical requirements for substitution of trivalent (Ce+3) for tetravalent (Th+4) may be fulfilled during SFE processes. Experimental substitution extractions were conducted by addition of different chelates and were conducted by subjecting the monazite samples to 20 MPa pressure for 180 min static flow and 10 min continuous flow extraction times with a CO2 flow rate of 2 mL/min with 10 % co-solvent flow rate. The results of the two sets of substitution extractions namely α and β show no clear indication of Th extraction. The maximum theoretical efficiency obtainable under current extraction equipment limitations was calculated as 12%. The XRF analysis error margin was given by the analytical laboratory as 10 %. The literature has shown the substitution of trivalent cations for tetravalent cations in the monazite structure to be a valid reaction mechanism. The experimental results showed little or no success in extracting thorium from monazite. In order to prove the practical feasibility of thorium extraction several changes to the experimental operating conditions is required. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
270

Feasibility of thorium extraction from a solid monazite matrix utilizing supercritical CO2 with TBP and HFA as chelates / Bruce De Cliffordt Mastoroudes

Mastoroudes, Bruce De Cliffordt January 2014 (has links)
With current energy demands globally and locally, nuclear energy remains one of the top competitors for cleaner and sustainable energy. The nuclear industry requires more inherent safety and proliferation resistance in reactor design. Thorium has therefore been identified as a possible fuel for future nuclear reactors that can comply with these requirements. However current extraction techniques are expensive, time consuming and generate large quantities of hazardous waste. A possible alternative to conventional solvent extraction of thorium is SFE (Supercritical Fluid Extraction). A monazite sample from the Steenkampskraal mine was investigated using SEM (Scanning Electron Microscope) analysis methods to determine the distribution of thorium in the grains that could potentially complicate the effectiveness of the SFE extraction method if zoning is present. The results show a homogeneous distribution with no discernable zonation in the grains. The concentration of Th, Ce and Nd was determined by quantitative MPA (Micro Probe Analysis). The results obtained from the MPA point analysis on several grains show average Th, Ce and Nd concentrations of 6.5 wt. %, 24.1 wt. % and 9.7 wt. % respectively. The extraction of Th+4 from a filter paper was conducted to verify the extraction procedure and extractability of transition elements employing SFE. The extraction was conducted using supercritical CO2 and methanol as co-solvent with TBP (Tributyl Phosphate) and HFA (Hexafluoroacetylacetone) added in situ as chelates. ICP-MS results for the Th+4 extraction procedure showed extraction efficiency of 53 % compared to 83 % in literature (Kumar et al. 2009). This marked difference in extraction efficiency is attributed to ineffective trapping methods employed and lack of prior maintenance and support on the extraction apparatus. Subsequently all further extracted samples of Th from monazite were tested using XRF analysis methods. Due to the lack of prior maintenance on the extraction apparatus several technical breakdowns were encountered and addressed from a mechanical engineering standpoint. The operational effectiveness of the modified apparatus was verified through the extraction of marula seed oil and compared with another supercritical fluid (SF) extractor to show 50 % extraction efficiency in each case. A review of the literature indicated that the crystal chemical requirements for substitution of trivalent (Ce+3) for tetravalent (Th+4) may be fulfilled during SFE processes. Experimental substitution extractions were conducted by addition of different chelates and were conducted by subjecting the monazite samples to 20 MPa pressure for 180 min static flow and 10 min continuous flow extraction times with a CO2 flow rate of 2 mL/min with 10 % co-solvent flow rate. The results of the two sets of substitution extractions namely α and β show no clear indication of Th extraction. The maximum theoretical efficiency obtainable under current extraction equipment limitations was calculated as 12%. The XRF analysis error margin was given by the analytical laboratory as 10 %. The literature has shown the substitution of trivalent cations for tetravalent cations in the monazite structure to be a valid reaction mechanism. The experimental results showed little or no success in extracting thorium from monazite. In order to prove the practical feasibility of thorium extraction several changes to the experimental operating conditions is required. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015

Page generated in 0.0367 seconds