Spelling suggestions: "subject:"rarefied gas dynamics."" "subject:"barefield gas dynamics.""
41 |
Étude de quelques modèles cinétiques décrivant le phénomène d'évaporation en gravitation / Study of several kinetic models describing the evaporation phenomenon in gravitationCarcaud, Pierre 02 June 2014 (has links)
L'étude de l'évolution de galaxies, et tout particulièrement du phénomène d'évaporation, a été pour la première fois menée à l'aide de modèles physiques, par Chandrasekhar notamment, dans les années 40. Depuis, de nouveaux modèles plus sophistiqués ont été introduits par les physiciens. Ces modèles d'évolution des galaxies sont des modèles cinétiques; bien connus et bien étudiés par les mathématiciens. Cependant, l'aspect évaporation (le fait que des étoiles sortent du système étudié) n'avait pas encore été étudié mathématiquement, à ma connaissance. La galaxie est vue comme un gaz constitué d'étoiles et le modèle consiste en une équation de Vlasov-Poisson, l'interaction étant la gravitation universelle, couplée avec au second membre un terme de collision de type Landau. On rajoute à ce modèle une condition d'évaporation qui consiste à dire que les étoiles dont l'énergie cinétique est suffisamment élevée pour quitter le système sont exclues. Ce modèle étant trop compliqué à étudier tel quel, je propose dans cette thèse plusieurs modèles simplifiés qui sont des premières étapes nécessaires à l'étude du modèle général et qui permettent de mieux comprendre les difficultés à surmonter. Dans une première partie, je m'intéresse au cas homogène en espace, pour lequel le terme de Vlasov-Poisson est remplacé par une simple dérivée en temps. Je fais une étude précise du cas à symétrie radiale en vitesse avec un potentiel Maxwellien, le terme de Landau étant alors remplacé par un terme de type Fokker-Planck, et je montre dans ce cas l'existence et l'unicité d'une solution régulière et l'existence d'un profil asymptotique des solutions. Dans le cas homogène général, je montre l'existence et l'unicité d'une solution régulière tout pendant que la masse ne s'est pas totalement évaporée. J'illustre ces résultats théoriques par des simulations numériques réalisés à l'aide de schéma numériques conservateurs. Dans une seconde partie, je m'intéresse au cas non homogène en espace en dérivant un modèle hydrodynamique pour un modèle de type Vlasov-BGK (plus simple que le modèle Vlasov-Poisson-Landau) avec évaporation. / The study of the evolution of the galaxies, and more specially of the evaporation phenomenon, was for the first time carried out, by Chandrasekhar in particular, in the 40s. Since then, more sophisticated models have been introduced by physicists. These models are kinetics models; well-known and well-studied by mathematicians. However, the evaporation (the fact that stars leave the galaxy) has never been studied before, to my knowledge. The galaxy is seen as a gaz of stars and the model is formed by a Vlasov-Poisson equation, with the gravitational interaction, coupled with Kernel of collision of Landau. A condition of evaporation is added to this model, saying the stars with a large enough kinetic energy are excluded. As this model is too complicated to be studied, I propose in this thesis several simpler models which constitute first steps toward the study of the general model and which inform us about the difficulties implied. In the first part, I am interested in the space-homogeneous model, for which the Vlasov-Poisson term is replaced by a simple time derivative. I make a precise study of the spherically symmetric case with a Maxwellian potential for which the the Landau term is replaced by a Fokker-Planck typed term, and I show the existence of a unique regular solution and the fact that this solution admits an asymptotical profile. In the general homogeneous case, I show the existence of a unique regular solution as long as the mass has not totally disappeared. Theses theoretical results are illustrated with numerical simulations obtained with conservative schemes. In the second part, I am interested in the inhomogeneous case and I derive an hydro-dynamical model for a Vlasov-BGK model (a simpler model than Vlasov-Poisson-Landau) with evaporation.
|
42 |
SOLUÇÃO DE PROBLEMAS EM SEMIESPAÇO NA DINÂMICA DE GASES RAREFEITOS BASEADA EM MODELOS CINÉTICOS / SOLUTION OF PROBLEMS IN HALF SPACE IN THE RAREFIED GAS DYNAMICS BASED KINETIC MODELSCromianski, Solange Regina 28 February 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The method discrete ordinates is used to solve problems involving rarefied gas dynamics. In this
work, a version of the analytical method discrete ordinates (ADO) is used to solve problems in a
semi-infinite. The complete analytical development, in cartesian coordinates, the solution of the
Thermal-Slip and Viscous-Slip problems is presented, for four kinetic models: BGK model, S
model, Gross Jackson model and MRS model in a unified approach. In addition, to describe the
interaction between gas and surface, we use the Cercignani-Lampis boundary condition defined in
terms of the coefficients of accommodation of tangential momentum and energy accommodation
coefficient kinetic corresponding the velocity normal. Numerical results are presented, where we
obtain quantities of interest, such as: velocity profile and heat flow profile, which were implemented
computationally through the FORTRAN program. / O método de ordenadas discretas é utilizado na solução de alguns problemas envolvendo a
dinâmica de gases rarefeitos. Neste trabalho, uma versão analítica do método de ordenadas
discretas (ADO) é usada para resolver problemas em meio semiinfinito. O desenvolvimento
analítico completo, em coordenadas cartesianas, da solução dos problemas Deslizamento Térmico
e Deslizamento Viscoso é apresentada, para quatro modelos cinéticos: modelo BGK, modelo S,
modelo Gross Jackson e modelo MRS em uma abordagem unificada. Além disso, para descrever
o processo de interação entre o gás e a parede utiliza-se o núcleo de Cercignani-Lampis definido
em termos do coeficiente de acomodação do momento tangencial e do coeficiente de acomodação
da energia cinética correspondendo a velocidade normal. Resultados numéricos são apresentados,
onde obtém-se grandezas de interesse, tais como: perfil de velocidade e perfil de fluxo de calor, os
quais foram implementados computacionalmente através do programa FORTRAN.
|
43 |
Rarefied Plume Modeling for VISORS MissionAnn Marie Karis (12487864) 03 May 2022 (has links)
<p> The Virtual Super-resolution Optics with Reconfigurable Swarms (VISORS) mission aims to produce high-resolution images of solar release sites in the solar corona using a distributed telescope. The collected data will be used to investigate the existence of underlying energy release mechanisms. The VISORS telescope is composed of two spacecraft flying in a formation configuration. The optics spacecraft (OSC) hosts the optic system, while the detector spacecraft (DSC) is located behind the OSC in alignment with the Sun and houses a detector. The two modes of operation for the CubeSats are Science Operations Mode and Standby Mode. In Science Operations Mode, the two spacecraft are at a close distance which may make the plume impingement an issue. The cold gas thruster propulsion systems in both the OSC and DSC use R-236fa (HFC) refrigerant. The plume from the system is modeled using SPARTA Direct Simulation Monte Carlo (DSMC) Simulator while the refrigerant itself is modeled using an equivalent particle that closely matches viscosity and specific heat. This work aims to investigate plume propagation for two different flow inputs. The DSMC simulations are performed with the input parameters acquired using the isentropic relations and CFD simulations of the 2D axisymmetric nozzle flow. Additionally, the DSMC results are compared to the Boynton-Simons, Roberts-South, and Gerasimov analytical plume models. </p>
|
44 |
A Morphable Entry System for Small Satellite Aerocapture at MarsJannuel Vincenzo V Cabrera (12537673) 12 May 2022 (has links)
<p> </p>
<p>As space agencies look to conduct more scientific missions beyond Earth orbit, low-cost access to space becomes indispensable. Small satellites (smallsats) fulfill this need as they can be developed at a fraction of the cost of traditional large satellites. Consequently, smallsats are being envisioned for planetary science missions at several destinations including Mars. However, a significant challenge for interplanetary smallsats is performing fully-propulsive orbit insertion because modern smallsat propulsion technologies have limited total velocity change capabilities. At destinations with significant atmospheres, this challenge can be circumvented via <em>aerocapture</em>, a technique that uses a single atmospheric pass to convert a hyperbolic approach trajectory into a captured elliptical orbit. Aerocapture has been shown to enable significant propellant mass savings as compared to fully-propulsive orbit insertion, making it an attractive choice for smallsats. Performing aerocapture with smallsats requires a suitable vehicle design that satisfies the associated control requirements and volumetric constraints. To address this requirement, this dissertation proposes the <em>morphable entry system </em>(MES), a conceptual deployable entry vehicle that utilizes shape morphing to follow a desired atmospheric flight profile during aerocapture. The aerocapture performance of the MES at Mars is investigated using a six degree-of-freedom aerocapture simulation environment. The shape morphing strategy employed by the MES is shown to be feasible for targeting desired angle of attack and sideslip angle profiles that lead to successful orbit captures. Furthermore, the robustness of the MES to simulated day-of-flight uncertainties while employing angle of attack control is demonstrated through a Monte Carlo dispersion analysis. The major contributions of this research as well as areas of future work are described.</p>
|
45 |
Modeling evaporation in the rarefied gas regime by using macroscopic transport equationsBeckmann, Alexander Felix 19 April 2018 (has links)
Due to failure of the continuum hypothesis for higher Knudsen numbers, rarefied gases and microflows of gases are particularly difficult to model. Macroscopic transport equations compete with particle methods, such as the direct simulation Monte Carlo method (DSMC) to find accurate solutions in the rarefied gas regime. Due to growing interest in micro flow applications, such as micro fuel cells, it is important to model and understand evaporation in this flow regime. To gain a better understanding of evaporation physics, a non-steady simulation for slow evaporation in a microscopic system, based on the Navier-Stokes-Fourier equations, is conducted. The one-dimensional problem consists of a liquid and vapor layer (both pure water) with respective heights of 0.1mm and a corresponding Knudsen number of Kn=0.01, where vapor is pumped out. The simulation allows for calculation of the evaporation rate within both the transient process and in steady state. The main contribution of this work is the derivation of new evaporation boundary conditions for the R13 equations, which are macroscopic transport equations with proven applicability in the transition regime. The approach for deriving the boundary conditions is based on an entropy balance, which is integrated around the liquid-vapor interface. The new equations utilize Onsager relations, linear relations between thermodynamic fluxes and forces, with constant coefficients that need to be determined. For this, the
boundary conditions are fitted to DSMC data and compared to other R13 boundary conditions from kinetic theory and Navier-Stokes-Fourier solutions for two steady-state, one-dimensional problems. Overall, the suggested fittings of the new phenomenological boundary conditions show better agreement to DSMC than the alternative kinetic theory evaporation boundary conditions for R13. Furthermore, the new evaporation boundary conditions for R13 are implemented in a code for the numerical solution of complex, two-dimensional geometries and compared to Navier-Stokes-Fourier (NSF) solutions. Different flow patterns between R13 and NSF for higher Knudsen numbers are observed which suggest continuation of this work. / Graduate
|
Page generated in 0.0902 seconds