• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 30
  • 29
  • 22
  • 17
  • 10
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 315
  • 315
  • 59
  • 42
  • 39
  • 34
  • 32
  • 31
  • 30
  • 24
  • 21
  • 20
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

CÃlculo do Fator-de-Forma exato entre Ãreas Diferencial e Finita Usando CSG / Computation the exact form factor between a finite area and a differential area using CSG

Isaac Moreira Barreto 10 March 2008 (has links)
Universidade Federal do Cearà / Os mÃtodos de Ray-Tracing e Radiosidade sÃo os principais representantes dos mÃtodos existentes para resolver o problema de iluminaÃÃo global. Em ambos os mÃtodos se faz necessÃrio saber a taxa de transferÃncia de energia luminosa entre duas Ãreas. Essa taxa de transferÃncia, chamada de fator-de-forma, à um dos pontos principais no mÃtodo de Radiosidade e vem sendo usado cada vez com mais frequÃncia em mÃtodos de Ray-Tracing com fontes luminosas de Ãrea finita. Existem vÃrios mÃtodos para o cÃlculo do fator-de-forma, a maioria deles sÃo aproximativos por uma questÃo de desempenho. PorÃm, em casos especÃficos, o trabalho extra para calcular o valor exato do fator-de-forma pode melhorar o desempenho global do mÃtodo. Em geral, nesses casos, o esforÃo necessÃrio para se obter uma aproximaÃÃo aceitÃvel do valor do fator-de-forma supera o esforÃo necessÃrio para calcular o valor exato em si. AlÃm disso, existem situaÃÃes, tais como a renderizaÃÃo nas Ãreas de fronteiras de sombras, em que uma alta precisÃo à mais importante do que um ganho no desempenho. Nessas situaÃÃes, à desejÃvel que o mÃtodo tenha ao seu dispor uma maneira de calcular o valor exato do fator-de-forma. Neste trabalho à apresentado um mÃtodo para calcular o fator-de-forma exato entre uma Ãrea finita e uma Ãrea diferencial que utiliza de tÃcnicas CSG para identificar as Ãreas ocluÃdas do polÃgono emissor. / The Ray-Tracing and Radiosity methods are the main representatives of the method that solve the global illumination problem. In both mthods it is necessary to know the energy tranfer ratio between two areas. This ratio, called form factor, is one of the key concepts in Radiosity methods and is being more frequently used in Ray-Tracing methods with finite area light sources. There are many methods for the computation of the form factor, most of them are approximative due to a matter of performance, but, in some specific cases, the extra computational effort needed to compute the exact value of the form factor can improve the overall performance of the illumination method. In general, in these cases, the computational effort needed to obtain an acceptable approximation of the form factor outweighs the effort necessary to compute the exact value. Furthermore there are situation, for example, shadow boundary shading, in which a high precision is far more important than a performance gain. In this work we present a method to compute the exact form factor between a finite area and a differential area which uses CSG techniques to identify the ooccluded areas of the source.
102

Raytracing pro GPUEngine / Raytracing for GPUEngine

Novák, David January 2019 (has links)
The main goal of this thesis is ray tracing optimization, especially with the use of acceleration data structure. It'll be focused on discretion about various structure build strategies and their traversal. Different algorithms on the CPU and on the GPU will be implemented and compared in the thesis, specifically will be compared the speed of build and final structure quality, which have a direct influence on ray tracing performance. A ray tracing application will be implemented for the purpose of the acceleration structure quality test. A part with acceleration structure building will be added to GPUEngine library.
103

An Analysis of Real-Time Ray Tracing Techniques Using the Vulkan® Explicit API

Souza, Elleis C 01 June 2021 (has links) (PDF)
In computer graphics applications, the choice and implementation of a rendering technique is crucial when targeting real-time performance. Traditionally, rasterization-based approaches have dominated the real-time sector. Other algorithms were simply too slow to compete on consumer graphics hardware. With the addition of hardware support for ray-intersection calculations on modern GPUs, hybrid ray tracing/rasterization and purely ray tracing approaches have become possible in real-time as well. Industry real-time graphics applications, namely games, have been exploring these different rendering techniques with great levels of success. The addition of ray tracing into the graphics developer’s toolkit has without a doubt increased what level of graphical fidelity is achievable in real-time. In this thesis, three rendering techniques are implemented in a custom rendering engine built on the Vulkan® Explicit API. Each technique represents a different family of modern real-time rendering algorithms. A largely rasterization-based method, a hybrid ray tracing/rasterization method, and a method solely using ray tracing. Both the hybrid and ray tracing exclusive approach rely on the ReSTIR algorithm for lighting calculations. Analysis of the performance and render quality of these approaches reveals the trade-offs incurred by each approach, alongside the performance viability of each in a real-time setting.
104

Zobrazení šachů pomocí sledování paprsku / Rendering Chess Using Ray Tracing

Vaverka, Martin Unknown Date (has links)
This work aims at rendering 3D scene using ray tracing. It describes advantages and disadvantages of this technology and its alternation known as distributed ray tracing. Other part deals with method from different branch, which are closely related to distributed ray tracing - constructive solid geometry and procedural texturing.
105

Energy-Efficient Interactive Ray Tracing of Static Scenes on Programmable Mobile GPUs

Lohrmann, Peter J 11 January 2007 (has links)
Mobile technology is improving in quality and capability faster now than ever before. When first introduced, cell phones were strictly used to make voice calls; now, they play satellite radio, MP3s, streaming television, have GPS and navigation capabilities, and have multi-megapixel video cameras. In the near future, cell phones will have programmable graphics processing units (GPU) that will allow users to play games similar to those currently available for top-of-the-line game consoles. Personal digital assistants enable users with full email, scheduling, and internet browsing capabilities in addition to those features offered on cell phones. Underlying all this mobile technology and entertainment is a battery whose technology has just barely tripled in the past 15 years, compared to available disk capacity that has increased over 1,000-fold. Ray tracing is a rendering technique used to generate photorealistic images that include reflections, refraction, participating media, and can fairly easily be extended to include photon mapping for indirect illumination and caustics. In recent years, ray tracing has been implemented on the GPU using various acceleration structures to facilitate rendering. Until now, all studies have used build time and achievable frame rates to determine which acceleration structure is best for ray tracing. We present the very first results comparing both CPU and GPU raytracing using various acceleration structures in terms of energy consumption. By exploring per-pixel costs, we provide insight on the energy consumption and frame rates that can be experienced on cell phones and other mobile devices based on currently available screen resolutions. Our results show that the choice in processing unit has the greatest affect on energy and time costs of ray tracing, followed by the size of the viewport used, and the choice of acceleration structure has the least impact on efficiency. For mobile devices enabled with a programmable GPU, whether it is a cell phone, PDA, or laptop computer, a bounding volume hierarchy implemented on the GPU is the most energy-efficient acceleration structure for ray tracing. Ray tracing on cellular phones with smaller screen resolutions is most energy-efficient using a CPU-based Kd-Tree implementation.
106

Hybrid Spectral Ray Tracing Method for Multi-scale Millimeter-wave and Photonic Propagation Problems

Hailu, Daniel 30 September 2011 (has links)
This thesis presents an efficient self-consistent Hybrid Spectral Ray Tracing (HSRT) technique for analysis and design of multi-scale sub-millimeter wave problems, where sub-wavelength features are modeled using rigorous methods, and complex structures with dimensions in the order of tens or even hundreds of wavelengths are modeled by asymptotic methods. Quasi-optical devices are used in imaging arrays for sub-millimeter and terahertz applications, THz time-domain spectroscopy (THz-TDS), high-speed wireless communications, and space applications to couple terahertz radiation from space to a hot electron bolometer. These devices and structures, as physically small they have become, are very large in terms of the wavelength of the driving quasi-optical sources and may have dimension in the tens or even hundreds of wavelengths. Simulation and design optimization of these devices and structures is an extremely challenging electromagnetic problem. The analysis of complex electrically large unbounded wave structures using rigorous methods such as method of moments (MoM), finite element method (FEM), and finite difference time domain (FDTD) method can become almost impossible due to the need for large computational resources. Asymptotic high-frequency techniques are used for analysis of electrically large quasi-optical systems and hybrid methods for solving multi-scale problems. Spectral Ray Tracing (SRT) has a number of unique advantages as a candidate for hybridization. The SRT method has the advantages of Spectral Theory of Diffraction (STD). STD can model reflection, refraction and diffraction of an arbitrary wave incident on the complex structure, which is not the case for diffraction theories such as Geometrical Theory of Diffraction (GTD), Uniform theory of Diffraction (UTD) and Uniform Asymptotic Theory (UAT). By including complex rays, SRT can effectively analyze both near-fields and far-fields accurately with minimal approximations. In this thesis, a novel matrix representation of SRT is presented that uses only one spectral integration per observation point and applied to modeling a hemispherical and hyper-hemispherical lens. The hybridization of SRT with commercially available FEM and MoM software is proposed in this work to solve the complexity of multi-scale analysis. This yields a computationally efficient self-consistent HSRT algorithm. Various arrangements of the Hybrid SRT method such as FEM-SRT, and MoM-SRT, are investigated and validated through comparison of radiation patterns with Ansoft HFSS for the FEM method, FEKO for MoM, Multi-level Fast Multipole Method (MLFMM) and physical optics. For that a bow-tie terahertz antenna backed by hyper-hemispherical silicon lens, an on-chip planar dipole fabricated in SiGe:C BiCMOS technology and attached to a hyper-hemispherical silicon lens and a double-slot antenna backed by silica lens will be used as sample structures to be analyzed using the HSRT. Computational performance (memory requirement, CPU/GPU time) of developed algorithm is compared to other methods in commercially available software. It is shown that the MoM-SRT, in its present implementation, is more accurate than MoM-PO but comparable in speed. However, as shown in this thesis, MoM-SRT can take advantage of parallel processing and GPU. The HSRT algorithm is applied to simulation of on-chip dipole antenna backed by Silicon lens and integrated with a 180-GHz VCO and radiation pattern compared with measurements. The radiation pattern is measured in a quasi-optical configuration using a power detector. In addition, it is shown that the matrix formulation of SRT and HSRT are promising approaches for solving complex electrically large problems with high accuracy. This thesis also expounds on new measurement setup specifically developed for measuring integrated antennas, radiation pattern and gain of the embedded on-chip antenna in the mmW/ terahertz range. In this method, the radiation pattern is first measured in a quasi-optical configuration using a power detector. Subsequently, the radiated power is estimated form the integration over the radiation pattern. Finally, the antenna gain is obtained from the measurement of a two-antenna system.
107

Hybrid Spectral Ray Tracing Method for Multi-scale Millimeter-wave and Photonic Propagation Problems

Hailu, Daniel 30 September 2011 (has links)
This thesis presents an efficient self-consistent Hybrid Spectral Ray Tracing (HSRT) technique for analysis and design of multi-scale sub-millimeter wave problems, where sub-wavelength features are modeled using rigorous methods, and complex structures with dimensions in the order of tens or even hundreds of wavelengths are modeled by asymptotic methods. Quasi-optical devices are used in imaging arrays for sub-millimeter and terahertz applications, THz time-domain spectroscopy (THz-TDS), high-speed wireless communications, and space applications to couple terahertz radiation from space to a hot electron bolometer. These devices and structures, as physically small they have become, are very large in terms of the wavelength of the driving quasi-optical sources and may have dimension in the tens or even hundreds of wavelengths. Simulation and design optimization of these devices and structures is an extremely challenging electromagnetic problem. The analysis of complex electrically large unbounded wave structures using rigorous methods such as method of moments (MoM), finite element method (FEM), and finite difference time domain (FDTD) method can become almost impossible due to the need for large computational resources. Asymptotic high-frequency techniques are used for analysis of electrically large quasi-optical systems and hybrid methods for solving multi-scale problems. Spectral Ray Tracing (SRT) has a number of unique advantages as a candidate for hybridization. The SRT method has the advantages of Spectral Theory of Diffraction (STD). STD can model reflection, refraction and diffraction of an arbitrary wave incident on the complex structure, which is not the case for diffraction theories such as Geometrical Theory of Diffraction (GTD), Uniform theory of Diffraction (UTD) and Uniform Asymptotic Theory (UAT). By including complex rays, SRT can effectively analyze both near-fields and far-fields accurately with minimal approximations. In this thesis, a novel matrix representation of SRT is presented that uses only one spectral integration per observation point and applied to modeling a hemispherical and hyper-hemispherical lens. The hybridization of SRT with commercially available FEM and MoM software is proposed in this work to solve the complexity of multi-scale analysis. This yields a computationally efficient self-consistent HSRT algorithm. Various arrangements of the Hybrid SRT method such as FEM-SRT, and MoM-SRT, are investigated and validated through comparison of radiation patterns with Ansoft HFSS for the FEM method, FEKO for MoM, Multi-level Fast Multipole Method (MLFMM) and physical optics. For that a bow-tie terahertz antenna backed by hyper-hemispherical silicon lens, an on-chip planar dipole fabricated in SiGe:C BiCMOS technology and attached to a hyper-hemispherical silicon lens and a double-slot antenna backed by silica lens will be used as sample structures to be analyzed using the HSRT. Computational performance (memory requirement, CPU/GPU time) of developed algorithm is compared to other methods in commercially available software. It is shown that the MoM-SRT, in its present implementation, is more accurate than MoM-PO but comparable in speed. However, as shown in this thesis, MoM-SRT can take advantage of parallel processing and GPU. The HSRT algorithm is applied to simulation of on-chip dipole antenna backed by Silicon lens and integrated with a 180-GHz VCO and radiation pattern compared with measurements. The radiation pattern is measured in a quasi-optical configuration using a power detector. In addition, it is shown that the matrix formulation of SRT and HSRT are promising approaches for solving complex electrically large problems with high accuracy. This thesis also expounds on new measurement setup specifically developed for measuring integrated antennas, radiation pattern and gain of the embedded on-chip antenna in the mmW/ terahertz range. In this method, the radiation pattern is first measured in a quasi-optical configuration using a power detector. Subsequently, the radiated power is estimated form the integration over the radiation pattern. Finally, the antenna gain is obtained from the measurement of a two-antenna system.
108

Elektronový ray tracer / Ray Tracing for Electron Microscope

Suchánek, Jan January 2019 (has links)
This thesis is pointed on simulation of electron microscope. It uses knowledge  from ray-tracing methods and physically based rendering with physics of electron microscopy. The main object of this thesis is to create realistic simulator for electron microscope which can generate satisfying realistic images. This output can be used for another research in range of machine learning or microscope application development. This method should replace long and more expensive way of getting test images from real system for those research activities.
109

Raytracing virtuálních grafických scén / Raytracing of Virtual Graphics Scenes

Rypák, Andrej January 2012 (has links)
This thesis is dedicated to ray tracing based rendering methods, primarily the original ray tracing. Besides introducing a brief historical overview of algorithms from the family, it presents all the essential tools, techniques and physics needed for designing a rendering application in detail. A significant part of the document consists of an implementation of a photorealistic rendering application for interactive graphics 3D virtual scenes. The focus is on rendering without using any additional model information. The thesis includes descriptions and explanations of specific problems and their solutions.
110

Développement d'un modèle thermomécanique axisymétrique en milieu semi-transparent avec transfert radiatif : application au fluage et à la trempe des verres / Development of an axisymmetric thermomechanical model in semi-transparent medium with radiative transfer : application to the creep and the tempering of glasses

Agboka, Kossiga 26 June 2018 (has links)
La majorité des produits verriers du marché sont issus d’une opération de mise en forme à hautes températures, suivie d’une phase de refroidissement contrôlé afin d’éliminer (verre recuit) ou générer (verre trempé) des contraintes résiduelles. Le comportement mécanique du verre étant fortement thermo-dépendant, le contrôle des températures est un élément déterminant pour le succès du procédé de fabrication. Lors de la simulation numérique, pour ce milieu semi-transparent, les échanges thermiques par conduction et par rayonnement sont à considérer. La résolution de l’ETR (Equation de Transfert Radiatif) est menée dans cette thèse par le biais de la « Méthode P1 » et le « Back Ray Tracing » (BRT). Les deux codes développés ont été validés par l’étude comparative avec les données en températures et en contraintes résiduelles issues de la littérature sur le refroidissement dans l’épaisseur du verre soumis à des conditions variées en convection naturelle et forcée. Une expérimentation qui consiste à refroidir un disque de verre sur un support métallique a été développée dans le but de comparer les températures et contraintes générées par l’expérimentation et par la modélisation issue du couplage thermomécanique avec les deux codes P1 et BRT. De manière plus originale, la méthode BRT a été étendue à des géométries de révolution. Une première approche a consisté à étudier le fluage d’une goutte de verre et à analyser l’influence du choix du modèle de résolution de l’ETR sur les températures et les géométries au cours de la mise en forme. / Most of glass products on the market come from a high-temperature forming operation, followed by a controlled cooling phase to remove (annealed glass) or generate (tempered glass) residual stresses. Since the mechanical behaviour of the glass is highly thermo-dependent, temperature control is a determining factor for the success of the manufacturing process. During numerical simulations, for this semi-transparent medium, heat exchanges by conduction and radiation have to be considered. In this work, the resolution of the ETR (radiative transfer Equation) is carried out using the "P1 method" and the "Back Ray tracing" (BRT). The two developed codes were validated by the comparative study with the temperature and residual stresses data from the literature on cooling in the thickness of the glass subject to various conditions in natural and forced convection. An experimentation which consists in cooling a glass disk on a metal support was developed in order to compare the temperatures and stresses generated by the testing and by the modelling resulting from the thermomechanical coupling with the two codes P1 and BRT. In a more original way, the BRT method was extended to revolving geometries. A first approach was to study the creep of a glass gob and to analyze the influence of the choice of the ETR's resolution model on the temperatures and geometries during the forming.

Page generated in 0.1274 seconds