• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

UV Sensors based on Surface and Bulk Acoustic Wave Devices

Wei, Ching-Liang 25 August 2011 (has links)
In this thesis, Rayleigh-mode and Sezawa-mode surface acoustic wave devices, and SMR-based (solidly mounted resonator, SMR) thin film bulk acoustic wave devices were employed to construct the UV sensors. The oscillators are composed of acoustic wave devices, high-frequency amplifier and matching networks. Due to the fact that the different acoustic wave devices are associated with the different propagating behaviors, electromechanical coefficient and resonance characteristics, they lead to the diversely sensing properties. Although Rayleigh-mode and Sezawa-mode SAW devices are both constructed by a ZnO sensing layer, they operate with different resonance behaviors and propagate with different phase velocities in the layered structures. Therefore, they result in different frequency shifts and sensitivities while illuminating UV light on the surface of ZnO thin films. As to the SMR device, the acoustic waves are confined within the ZnO piezoelectric layer sandwiched between two metal electrodes and then resonance as standing waves. In general, thin film bulk acoustic wave devices, which are SMR devices in this thesis, possess a higher operating frequency and better frequency response than those of SAW devices. Therefore, it is expected that UV sensors based on SMR devices will lead to an excellent performance. The Rayleigh-mode SAW-based UV sensors consisted of a 3£gm-thickness ZnO thin film for sensing UV light and a 2mm-thickness LiNbO3 substrate for generating surface acoustic waves in the ZnO/ LiNbO3 layered structure. Because surface acoustic waves travel along the surface within the depth of one wavelength, 32 £gm herein, most of them propagate in the LiNbO3 substrate. SAWs were perturbed slightly and consequently resulted in an unsatisfactorily maximum frequency shift of 63.75 kHz when a UV light intensity of 1250 £gW/cm2 was illuminated on the surface of ZnO thin film. Because ZnO films in this thesis are used as the sensing layer for UV light, we adjusted the sputtering parameter of deposition temperature to improve their crystalline properties and further enhance the sensitivity of ZnO/LiNbO3 layered SAW devices. Finally, the maximum frequency shift was raised to 264 kHz with the same UV light intensity using the deposition temperature of 400 ¢J. The ZnO thin films in the ZnO/Si layered structure were simultaneously employed as the piezoelectric layer for generating SAWs and the sensing layer for UV light. Therefore, all of the acoustic waves propagate within the ZnO thin films and are easier disturbed than the devices operated with the ZnO/LiNbO3 layered structure. This accounts for the relatively large frequency shift of 1017 kHz with the UV light intensity of 551 £gW/cm2. The ½ £f type SMR device was adopted to construct the UV sensor due to their better resonance characteristics than those of ¼ £f type. As can be seen from the results that SMR-based UV sensor presented better UV sensing properties compared with SAW-based UV sensors. The reasons for the considerable frequency shifts and sensitivities can be attributed to that SMR-based sensor possesses a shorter resonance wavelength and a larger electromechanical coefficient than those of SAW-based devices. Finally, the maximum frequency shift of 552 kHz can be obtained when the illumination intensity of UV light was 212 £gW/cm2.
2

Caractérisation de couches minces par ondes de surface générées et détectées par sources lasers / Thin films characterization using surface acoustic waves generated and detected by laser sources

Fourez, Sabrina 14 May 2013 (has links)
Les dépôts effectués sur substrats de silicium sont très courants notamment dans le domaine de la microélectronique. Les propriétés physiques recherchées pour ce type de structures dépendent fortement de celles de la couche. Il apparaît donc essentiel de connaître les paramètres élastiques ainsi que l’épaisseur des films considérés. De plus, la détection de certains défauts concernant la couche est souvent recherchée. L’objectif de ce travail a été de contribuer à la caractérisation de structures du type couche sur substrat. Pour cela, les ultrasons-lasers présentent de nombreux avantages puisqu’ils autorisent entre autres leur contrôle non destructif sans contact. Les ondes acoustiques de surface dans une gamme de fréquence s’étendant jusqu’à 45 MHz ont été utilisées. Nous avons développé différents modèles analytiques et les résultats expérimentaux ont aussi été comparés à certaines simulations par éléments finis. Plus particulièrement, nous avons montré qu’il était possible d’obtenir l’ensemble des paramètres élastiques du substrat et de la couche ainsi que l’épaisseur de cette dernière. Par ailleurs, nous nous sommes aussi intéressés à la détection de certains défauts en régime impulsionnel mais aussi quasi-monochromatique. Des résultats originaux concernant l’effet d’une absence de couche de forme déterminée sur le premier mode de Rayleigh ou bien encore de problèmes d’adhésion ont été présentés. Sur ce dernier point, une méthode innovante permettant de distinguer un fort niveau d’adhésion d’un faible a aussi été introduite. / Thin films deposited on silicon substrates are very common especially in microelectronic applications. The physical properties expected for these types of structures depend on the properties of the layer. Therefore, it is essential to know elastic parameters and thickness of the films considered. Furthermore, some layer defects detection is often required. The aim of this work was to contribute to the characterization of structures composed of a single layer deposited on a substrate. For this, laser ultrasonics offers many advantages since it is nondestructive and non-contact method. Surface acoustic waves excited in a frequency range up to 45 MHz are used. Analytical models have been developed and experimental results have also been compared with some finite element simulations. More specifically, we have shown that it was possible to obtain the thickness of the layer and all elastic parameters of both substrate and layer. In addition, we have been interested in the detection of various defects with a broadband and quasi-monochromatic excitation. Original results concerning the effect of a lack of layer with a specific geometry on the first Rayleigh mode or even adhesion problems were presented. Concerning this last point, an innovative method to tell difference between high and low adhesion was introduced.

Page generated in 0.0568 seconds