• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Correction of scattered radiation in multi-energy radiography and tomography / Correction du rayonnement diffusé en imagerie multi-énergies radiographique et tomographique

Sossin, Artur 24 October 2016 (has links)
L’imagerie à rayons X couplée aux détecteurs résolus en énergie permet de différencier les matériaux présents et d’estimer leurs contributions respectives. Cependant, ces techniques nécessitent des images très précises. La présence du rayonnement diffusé conduit à une perte du contraste spatial et un biais dans l’imagerie radiographique ainsi que des artefacts dans la tomodensitométrie (TDM). L’objectif principal de cette thèse était de développer une approche de correction du rayonnement diffusé adaptée à l’imagerie multi-énergies. Pour réaliser cette tâche, un objectif secondaire a été défini : la conception et la validation d’un outil de simulation capable de fournir des images du diffusé résolu en énergie dans un temps raisonnable. Une fois validé, cet outil a permis d’étudier le comportement du diffusé dans le domaine spatial et énergétique. Sur la base de cette analyse du diffusé, une approche originale dite « Partial Attenuation Spectral Scatter Separation Approach » (PASSSA) adaptée à l’imagerie multi-énergies a été développée. L’évaluation de PASSSA en mode radiographique par des simulations numériques et des mesures expérimentales a révélé des résultats remarquables en termes d’amélioration du contraste d’image et de la réduction du biais induit par la présence du diffusé. De plus, des études de simulation ont permis d’évaluer la performance de l’approche développée dans la TDM, où PASSSA s’est révélée d’être très efficace pour corriger les distorsions in-duites par le rayonnement diffusé. D’autre part, l’amélioration de la performance dans le contexte de la décomposition des matériaux de base en radiographie après avoir appliqué la méthode développée a également été analysée : l’application de PASSSA se traduit par une amélioration substantielle de l’estimation des épaisseurs des matériaux de base. Finalement, sur la base des différents résultats de validation obtenus, une analyse des développements potentiels a été menée. / X-ray imaging coupled with recently emerged energy-resolved photon counting detectors provides the ability to differentiate material components and to estimate their respective thicknesses. However, such techniques require highly accurate images. The presence of scattered radiation leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and computed tomography (CT). Additionally, artifacts are also introduced in the case of the latter. The main aim of the present thesis was to develop a scatter correction approach adapted for multi-energy imaging. In order to achieve this task, a secondary objective was also set. Namely, the conception and validation of a simulation tool capable of providing energy-resolved scatter simulations in a reasonable time. Once validated through simulations and experimentally, this tool gave the ability to study the behavior of scattered radiation both in spatial and energy domains. Based on the conducted scatter analysis, a Partial Attenuation Spectral Scatter Separation Approach (PASSSA) adapted for multi-energy imaging was developed. The evaluation of PASSSA in radiographic mode through simulations and experiments revealed noteworthy results both in terms of image contrast improvement and scatter induced bias reduction. Additionally, simulation studies examined the performance of the developed approach in CT, where PASSSA also proved to be quite effective at correcting scatter induced distortions. Moreover, the performance improvement in the context of basis material decomposition in radiography after applying the designed method was also analyzed. It was concluded that the application of PASSSA results in a substantial improvement in basis material thickness estimation. Finally, based on the obtained simulated and experimental method evaluation results an analysis of perspective developments was also conducted.
2

Study of generalized Radon transforms and applications in Compton scattering tomography / Étude de transformées de Radon généralisées et applications en tomographie Compton

Rigaud, Gaël 20 November 2013 (has links)
Depuis l'avènement des premiers appareils imageurs par rayonnement ionisant initié par les prix Nobel Godfrey Newbold Hounsfield et Allan MacLeod Cormack en 1979, le besoin en de nouvelles techniques d'imagerie non invasives n'a cessé de croître. Ces techniques s'appuient sur les propriétés de pénétration dans la matière des rayonnements X et gamma pour détecter une structure cachée sans avoir à détruire le milieu exposé. Elles sont employées dans de nombreux domaines allant de l'imagerie médicale au contrôle non destructif en passant par le contrôle environnemental. Cependant les techniques utilisées jusqu'à maintenant subissent de fortes dégradations dans la qualité des mesures et des images reconstruites. Généralement approchées par un bruit, ces dégradations exigent d'être compensées ou corrigées par des dispositifs de collimation et de filtrage souvent coûteux. Ces dégradations sont principalement dues aux phénomènes de diffusion qui peuvent constituer jusqu'à 80 % du rayonnement émis en imagerie biomédicale. Dès les années 80 un nouveau concept a vu le jour pourcontourner cette difficulté : la tomographie Compton. Cette nouvelle approche propose de mesurer le rayonnement dit diffusé en se plaçant dans des gammes d'énergie (140−511 keV) où l'effet Compton est le phénomène de diffusion prépondérant. L'exploitation de tels dispositifs d'imagerie nécessite une compréhension profonde des interactions rayonnement/matière afin de proposer un modèle, cohérent avec les données mesurées, indispensable à la reconstruction d'images. Dans les systèmes d'imagerie conventionnels (qui mesurent le rayonnement primaire), la transformée de Radon définie sur les lignes droites est apparue comme le modèle naturel. Mais en tomographie Compton, l'information mesurée est liée à l'énergie de diffusion et ainsi à l'angle de diffusion.Ainsi la géométrie circulaire induite par le phénomène de diffusion rend la transformée de Radon classique inadaptée. Dans ce contexte, il devient nécessaire de proposer des transformées de type Radon sur des variétés géométriques plus larges.L'étude de la transformée de Radon sur de nouvelles diversités de courbes devient alors nécessaire pour répondre aux besoins d'outils analytiques de nouvelles techniques d'imagerie. Cormack, lui-même, fut le premier à étendre les propriétés de la transformée de Radon classique à une famille de courbes du plan. Par la suite plusieurs travaux ont été menés dans le but d'étudier la transformée de Radon définie sur différentes variétés de cercles, des sphères, des lignes brisées pour ne citer qu'eux. En 1994 S.J. Norton proposa la première modalité de tomography Compton modélisable par une transformée de Radon sur lesarcs de cercle, la CART1. En 2010 Nguyen et Truong établirent l'inversion de la transformée de Radon sur les arcs de cercle, CART2, permettant de modéliser la formation d'image dans une nouvelle modalité de tomographie Compton. La géométrie des supports d'intégration impliqués dans de nouvelles modalitésde tomographie Compton les conduirent à démontrer l'invertibilité de la transformée de Radon définie sur une famille de courbes de type Cormack, appelée C_alpha. Ils illustrèrent la procédure d'inversion dans le cadre d'une nouvelle transformée, la CART3 modélisant une nouvelle modalité de tomographie Compton.En nous basant sur les travaux de Cormack et de Truong et Nguyen, nous proposons d'établir plusieurs propriétés de la transformée de Radon définie sur la famille C_alpha et plus particulièrement sur C1. Nous avons ainsi démontré deux formules d'inversion qui reconstruisent l'image d'origine via sa décompositionharmonique circulaire et celle de sa transformée et qui s'apparentent à celles établies par Truong and Nguyen. Nous avons enfin établi la bien connue rétroprojection filtrée ainsi que la décomposition en valeurs singulières dans le cas alpha = 1. L'ensemble des résultats établis dans le cadre de cette étude apporte des réponses concrètes a / Since the advent of the first ionizing radiation imaging devices initiated by Godfrey Newbold Hounsfield and Allan MacLeod Cormack, Nobel Prizes in 1979, the requirement for new non-invasive imaging techniques has grown. These techniques rely upon the properties of penetration in the matter of X and gamma radiation for detecting a hidden structure without destroying the illuminated environment. They are used in many fields ranging from medical imaging to non-destructive testing through. However, the techniques used so far suffer severe degradation in the quality of measurement and reconstructed images. Usually approximated by a noise, these degradations require to be compensated or corrected by collimating devices and often expensive filtering. These degradation is mainly due to scattering phenomena which may constitute up to 80% of the emitted radiation in biological tissue. In the 80's a new concept has emerged to circumvent this difficulty : the Compton scattering tomography (CST).This new approach proposes to measure the scattered radiation considering energy ranges ( 140-511 keV) where the Compton effect is the phenomenon of leading broadcast. The use of such imaging devices requires a deep understanding of the interactions between radiation and matter to propose a modeling, consistent with the measured data, which is essential to image reconstruction. In conventional imaging systems (which measure the primary radiation) the Radon transformdefined on the straight lines emerged as the natural modeling. But in Compton scattering tomography, the measured information is related to the scattering energy and thus the scattering angle. Thus the circular geometry induced by scattering phenomenon makes the classical Radon transform inadequate.In this context, it becomes necessary to provide such Radon transforms on broader geometric manifolds.The study of the Radon transform on new manifolds of curves becomes necessary to provide theoretical needs for new imaging techniques. Cormack, himself, was the first to extend the properties of the conventional Radon transform of a family of curves of the plane. Thereafter several studies have been done in order to study the Radon transform defined on different varieties of circles, spheres, broken lines ... . In 1994 S.J. Norton proposed the first modality in Compton scattering tomography modeled by a Radon transform on circular arcs, the CART1 here. In 2010, Nguyen and Truong established the inversion formula of a Radon transform on circular arcs, CART2, to model the image formation in a new modality in Compton scattering tomography. The geometry involved in the integration support of new modalities in Compton scattering tomography lead them to demonstrate the invertibility of the Radon transform defined on a family of Cormack-type curves, called C_alpha. They illustrated the inversion procedure in the case of a new transform, the CART3, modeling a new modeling of Compton scattering tomography. Based on the work of Cormack and Truong and Nguyen, we propose to establish several properties of the Radon transform on the family C_alpha especially on C1. We have thus demonstrated two inversion formulae that reconstruct the original image via its circular harmonic decomposition and itscorresponding transform. These formulae are similar to those established by Truong and Nguyen. We finally established the well-known filtered back projection and singular value decomposition in the case alpha = 1. All results established in this study provide practical problems of image reconstruction associated with these new transforms. In particular we were able to establish new inversion methods for transforms CART1,2,3 as well as numerical approaches necessary for the implementation of these transforms. All these results enable to solve problems of image formation and reconstruction related to three Compton scattering tomography modalities.In addition we propose to improve models and algorithms es
3

Étude des artefacts en tomodensitométrie par simulation Monte Carlo

Bedwani, Stéphane 08 1900 (has links)
En radiothérapie, la tomodensitométrie (CT) fournit l’information anatomique du patient utile au calcul de dose durant la planification de traitement. Afin de considérer la composition hétérogène des tissus, des techniques de calcul telles que la méthode Monte Carlo sont nécessaires pour calculer la dose de manière exacte. L’importation des images CT dans un tel calcul exige que chaque voxel exprimé en unité Hounsfield (HU) soit converti en une valeur physique telle que la densité électronique (ED). Cette conversion est habituellement effectuée à l’aide d’une courbe d’étalonnage HU-ED. Une anomalie ou artefact qui apparaît dans une image CT avant l’étalonnage est susceptible d’assigner un mauvais tissu à un voxel. Ces erreurs peuvent causer une perte cruciale de fiabilité du calcul de dose. Ce travail vise à attribuer une valeur exacte aux voxels d’images CT afin d’assurer la fiabilité des calculs de dose durant la planification de traitement en radiothérapie. Pour y parvenir, une étude est réalisée sur les artefacts qui sont reproduits par simulation Monte Carlo. Pour réduire le temps de calcul, les simulations sont parallélisées et transposées sur un superordinateur. Une étude de sensibilité des nombres HU en présence d’artefacts est ensuite réalisée par une analyse statistique des histogrammes. À l’origine de nombreux artefacts, le durcissement de faisceau est étudié davantage. Une revue sur l’état de l’art en matière de correction du durcissement de faisceau est présentée suivi d’une démonstration explicite d’une correction empirique. / Computed tomography (CT) is widely used in radiotherapy to acquire patient-specific data for an accurate dose calculation in radiotherapy treatment planning. To consider the composition of heterogeneous tissues, calculation techniques such as Monte Carlo method are needed to compute an exact dose distribution. To use CT images with dose calculation algorithms, all voxel values, expressed in Hounsfield unit (HU), must be converted into relevant physical parameters such as the electron density (ED). This conversion is typically accomplished by means of a HU-ED calibration curve. Any discrepancy (or artifact) that appears in the reconstructed CT image prior to calibration is susceptible to yield wrongly-assigned tissues. Such tissue misassignment may crucially decrease the reliability of dose calculation. The aim of this work is to assign exact physical values to CT image voxels to insure the reliability of dose calculation in radiotherapy treatment planning. To achieve this, origins of CT artifacts are first studied using Monte Carlo simulations. Such simulations require a lot of computational time and were parallelized to run efficiently on a supercomputer. An sensitivity study on HU uncertainties due to CT artifacts is then performed using statistical analysis of the image histograms. Beam hardening effect appears to be the origin of several artifacts and is specifically addressed. Finally, a review on the state of the art in beam hardening correction is presented and an empirical correction is exposed in detail.
4

Étude des artefacts en tomodensitométrie par simulation Monte Carlo

Bedwani, Stéphane 08 1900 (has links)
En radiothérapie, la tomodensitométrie (CT) fournit l’information anatomique du patient utile au calcul de dose durant la planification de traitement. Afin de considérer la composition hétérogène des tissus, des techniques de calcul telles que la méthode Monte Carlo sont nécessaires pour calculer la dose de manière exacte. L’importation des images CT dans un tel calcul exige que chaque voxel exprimé en unité Hounsfield (HU) soit converti en une valeur physique telle que la densité électronique (ED). Cette conversion est habituellement effectuée à l’aide d’une courbe d’étalonnage HU-ED. Une anomalie ou artefact qui apparaît dans une image CT avant l’étalonnage est susceptible d’assigner un mauvais tissu à un voxel. Ces erreurs peuvent causer une perte cruciale de fiabilité du calcul de dose. Ce travail vise à attribuer une valeur exacte aux voxels d’images CT afin d’assurer la fiabilité des calculs de dose durant la planification de traitement en radiothérapie. Pour y parvenir, une étude est réalisée sur les artefacts qui sont reproduits par simulation Monte Carlo. Pour réduire le temps de calcul, les simulations sont parallélisées et transposées sur un superordinateur. Une étude de sensibilité des nombres HU en présence d’artefacts est ensuite réalisée par une analyse statistique des histogrammes. À l’origine de nombreux artefacts, le durcissement de faisceau est étudié davantage. Une revue sur l’état de l’art en matière de correction du durcissement de faisceau est présentée suivi d’une démonstration explicite d’une correction empirique. / Computed tomography (CT) is widely used in radiotherapy to acquire patient-specific data for an accurate dose calculation in radiotherapy treatment planning. To consider the composition of heterogeneous tissues, calculation techniques such as Monte Carlo method are needed to compute an exact dose distribution. To use CT images with dose calculation algorithms, all voxel values, expressed in Hounsfield unit (HU), must be converted into relevant physical parameters such as the electron density (ED). This conversion is typically accomplished by means of a HU-ED calibration curve. Any discrepancy (or artifact) that appears in the reconstructed CT image prior to calibration is susceptible to yield wrongly-assigned tissues. Such tissue misassignment may crucially decrease the reliability of dose calculation. The aim of this work is to assign exact physical values to CT image voxels to insure the reliability of dose calculation in radiotherapy treatment planning. To achieve this, origins of CT artifacts are first studied using Monte Carlo simulations. Such simulations require a lot of computational time and were parallelized to run efficiently on a supercomputer. An sensitivity study on HU uncertainties due to CT artifacts is then performed using statistical analysis of the image histograms. Beam hardening effect appears to be the origin of several artifacts and is specifically addressed. Finally, a review on the state of the art in beam hardening correction is presented and an empirical correction is exposed in detail.
5

Scattering correction in cone beam tomography using continuously thickness-adapted kernels / Correction du diffusé en tomographie par une méthode de convolution par noyaux continus

Bhatia 1990-...., Navnina 29 September 2016 (has links)
La tomodensitométrie intégrant une source de rayons X à faisceau divergent et un détecteur grand champ est une technique bien connue dans le domaine de la tomographie industrielle. La nature des matériaux et les épaisseurs traversées conduisent inévitablement à la génération de rayonnement diffusé. Ce dernier est généré par l’objet mais également par le détecteur. La présence de rayonnement parasite conduit à ne plus respecter l’hypothèse de la loi de Beer-Lambert. Par conséquent, on voit apparaitre sur les coupes tomographiques des artefacts de reconstruction comme des streaks, des effets ventouses ou des valeurs d’atténuation linéaire erronée. Par conséquence, on retrouve dans la littérature de nombreuses méthodes de correction du diffusé. Ce travail vise à mettre en point et tester une méthode originale de correction du diffusé. Le premier chapitre de cette étude, dresse un état de l’art de la plupart des méthodes de corrections existantes. Nous proposons, dans le deuxième chapitre, une évolution de la méthode de superposition des noyaux de convolution (Scatter Kernel Superposition). Notre méthode repose sur une description continue des noyaux en fonction de l’épaisseur traversée. Dans cette méthode, les noyaux de diffusion sont paramétrés analytiquement sur toute la plage d'épaisseur. Le procédé a été testé pour des objets à la fois mono-matériaux et poly-matériaux, ainsi que sur des données expérimentales et simulées. Nous montrons dans le troisième chapitre l’importance de la contribution du diffusé détecteur dans la qualité de l’image reconstruite. Mais également l’importance de décrire les noyaux de convolution à l'aide d'un modèle à quatre gaussienne. Les résultats obtenus à partir de données expérimentales prouvent que la correction du diffusé de l'objet seul ne suffit pas pour obtenir une image de reconstruite sans artefacts. Afin de disposer d’une meilleur modélisation du diffusé du détecteur, nous décrivons, dans le dernier chapitre, une méthode basée sur la combinaison de données expérimentales et simulées permettant d’améliorer l’estimation des noyaux de diffusé. / Advanced Cone Beam Computed Tomography (CBCT) typically uses a divergent conebeam source and a large area detector. As a result, there an inevitable increase in the size area of illumination causing an increase in the intensity of X-ray scatter signal, both from the object and the detector. This leads to the violation of prime assumption of reconstruction process which is based on straight line integrals path followed by the photons. Consequently scatter artifacts appear in the reconstruction images as steaks, cupping effect and thus produce wrong reconstruction values. Due to the severity of the reconstruction artifact caused by scatter, many scatter corrections methods have been adopted in literature. The first part of this study, reviews most of the existing scatter correction methods. The effect of scattering becomes more prominent and challenging in case of X-ray source of high energy which is used in industrial Non Destructive Testing (NDT), due to higher scatter to primary ratio (SPR). Therefore, in this study, we propose a continuously thickness-adapted deconvolution approach based on improvements in the Scatter Kernel Superposition (SKS) method. In this method, the scatter kernels are analytically parameterized over the whole thickness range of the object under study to better sample the amplitude and shape of kernels with respect to the thickness. The method is tested for both homogeneous and heterogeneous objects as well as simulated and experimental data. Another important aspect of this study is the comprehensive evaluation of contribution of the detector scatter performed using continuous method by separating the contribution of scatter due to the object and the detector. This is performed by modeling the scatter kernels using a four-Gaussian model. In the first approach, we performed this evaluation based on simulation of kernels from Monte Carlo simulations and the corrections are performed on typical industrial experimental data. The results obtained prove that the scatter correction only due to the object is not sufficient to obtain reconstruction image, free from artifacts, as the detector also scatters considerably. In order to prove this point experimentally and to have a better modeling of the detector, we describe a method based on combination of experiments and simulations to calculate the scatter kernels. The results obtained also prove, the contribution of the detector scattering becomes important and the PSF of the detector is not constant as considered in the studies so far, but it varies to a great extend with the energy spectrum.

Page generated in 0.0657 seconds