• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 328
  • 216
  • 42
  • 31
  • 30
  • 13
  • 11
  • 8
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 839
  • 839
  • 820
  • 205
  • 201
  • 199
  • 164
  • 137
  • 115
  • 102
  • 77
  • 71
  • 63
  • 59
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Potamanautes warreni biomarker assays to monitor silver nanomaterial contaminants in aquatic environments

Walters, Chavon Rene January 2016 (has links)
Philosophiae Doctor - PhD / There has been extensive growth in nanoscale technology in the last few decades to such a degree that nanomaterials (NMs) have become a constituent in a wide range of manufactured commercial and domestic products. This surge has resulted in uncertainties regarding their environmental impact, due to the significant increases in the amount of NMs released into the environment (Dowling et al., 2004) through intentional and unintentional releases. Like many other toxins, the aquatic environment is particularly vulnerable as it acts as a sink for nanoparticles (NPs) (Scown et al., 2010). The escalating growth of NMs has not advanced without efforts to understand its properties. Despite the dramatic advances in both the production and application of NMs, very little is known regarding their interaction with and effects on environmental and human health. Given the lack in scientific knowledge, particularly under various environmental conditions, it is often difficult to accurately assess the potential exposure pathways to ecological receptors of all NMs, silver nanoparticles (AgNPs) are the most widely used NPs, present in several consumer products mainly because of their anti-bacterial properties. It is estimated that the annual production exceeds 1000 tons/year (Piccinno et al., 2012). The increase uses of AgNPs in consumer products (e.g. textiles, cosmetics and personal hygiene), household appliances (e.g. washing machines and vacuum cleaners) and medical equipment have led to their increase release into the environment, thereby posing an environmental risk and human health concern. Silver NPs are known to induce the production of Reactive Oxygen Species (ROS) (Ahamed et al., 2010; Levard et al., 2012; Piao et al., 2011). Also since AgNPs are oxidized to ionic Ag (Ag+), it is still unclear whether the effects of ROS can be attributed to Ag+ release or to the AgNP itself (Fabrega et al., 2009; Miao et al., 2009). The behaviour of AgNPs is collectively influenced by inherent (nanoparticle size, shape, surface area, surface charge, crystal structure, coating, solubility/dissolution) and environmental factors (temperature, pH, ionic strength, salinity, organic matter). Climate change predictions indicate that the frequency, intensity and duration of extreme natural events (such as temperature elevations) will increase in the future (IPCC, 2001; IPCC, 2007). Global warming and climate change could increase atmospheric temperatures by 2.4 – 6.4 °C (IPCC, 2001; IPCC, 2007). The main feature associated with global climate change is the anticipation of wetter winters (i.e. increased flood events) and drier, warmer summers (i.e.extreme temperatures). These changes are likely to affect the inputs of contaminants into the environment as well as affect their behaviour, fate and transport, and toxicity in aquatic environments. It is known that the current temperature predictions in climate change scenarios could directly affect aquatic ecosystem communities (Carpenter et al., 1992), since temperature is also regarded as an important abiotic factor influencing growth and production of primary producers (i.e. algae, macrophytes etc.), and may also affect species distribution. For example, Liu et al. (2010) reported higher dissolution rates of AgNPs with increased temperature. Similarly, sudden hydrographic activity like high flood conditions may cause resuspension and redistribution of sediments. Few studies have linked the foreseeable climate change with contaminant release and ecosystem impacts. Similarly, few studies have analyzed the behaviour of NMs in the environment considering these predicted changes in mean temperatures. This thesis focuses on the effects of AgNPs on oxidative stress responses in the Cape River crab Potamonautes perlatus. The present work was undertaken to interpret the biological effects of AgNPs (< 100 nm) on P. perlatus, as well as to assess its effects under different environmental conditions. To understand the uptake, accumulation and biological effects of AgNPs, freshwater microcosms were produced to mimic a typical aquatic environment and temperature manipulated microcosms to which a commercially-available AgNP powder was added. Nanoparticles were characterized in the dry state and in suspension under different environmental conditions. Dissolution of total Ag was measured by inductively coupled plasma mass spectrometry (ICP-OES). Nanoparticle toxicity was assessed by measuring mortality and biomarkers of oxidative stress (CYP450, SOD, CAT, GST) evaluated in crab tissues. The overall results demonstrated that: (1) AgNPs may be transformed in both size and state under variable environmental conditions. The formation of smaller aggregates at higher temperatures suggests higher toxicity, (2) the release of free metal ions from NPs and NPs aggregates contribute to a higher toxicity towards aquatic organisms, (3) oxidative stress is a significant mechanism of AgNP toxicity and consequently enzymatic activation/inhibition with increasing AgNP concentration and temperatures, (4) oxidative stress responses to AgNPs particles were significantly modulated by temperature stress in P. perlatus, (5) mortality was observed from day 2 with maximum mortality achieved at day 7, (6) enzymes involved in detoxification, i.e. CYP450, has functional significance in the haemocytes, (7) P. perlatus has proved to be a significant target for AgNP exposure and, furthermore, has proved to be a suitable species to assess the ecotoxicity of AgNP in the aquatic environment, (8) antioxidant enzymes activities (are valuable tools to assess the oxidative status of crab tissues co-exposed to AgNPs and temperature. Furthermore, the results obtained in this study contributed to the understanding of the behaviour, bioavailability, uptake and toxicity of AgNPs under variable temperatures. / National Research Foundation (NRF) Thuthuka Fund and CSIR
72

Thioredoxin and Jab1 Control Estrogen- and Antiestrogen-Mediated Progression of the Cell Cycle Through p27 Interactions

Penney, Rosalind B 11 March 2011 (has links)
A major problem with breast cancer treatment is the prevalence of antiestrogen resistance, be it de novo or acquired after continued use. Many of the underlying mechanisms of antiestrogen resistance are not clear, although estrogen receptor-mediated actions have been identified as a pathway that is blocked by antiestrogens. Selective estrogen receptor modulators (SERMs), such as tamoxifen, are capable of producing reactive oxygen species (ROS) through metabolic activation, and these ROS, at high levels, can induce irreversible growth arrest that is similar to the growth arrest incurred by SERMs. This suggests that SERM-mediated growth arrest may also be through ROS accumulation. Breast cancer receiving long-term antiestrogen treatment appears to adapt to this increased, persistent level of ROS. This, in turn, leads to the disruption of reversible redox signaling that involves redox-sensitive phosphatases and protein kinases and transcription factors. This has downstream consequences for apoptosis, cell cycle progression, and cell metabolism. For this dissertation, we explored if altering the ROS formed by tamoxifen also alters sensitivity of the drug in resistant cells. We explored an association with a thioredoxin/Jab1/p27 pathway, and a possible role of dysregulation of thioredoxin-mediated redox regulation contributing to the development of antiestrogen resistance in breast cancer. We used standard laboratory techniques to perform proteomic assays that showed cell proliferation, protein concentrations, redox states, and protein-protein interactions. We found that increasing thioredoxin reductase levels, and thus increasing the amount of reduced thioredoxin, increased tamoxifen sensitivity in previously resistant cells, as well as altered estrogen and tamoxifen-induced ROS. We also found that decreasing levels of Jab1 protein also increased tamoxifen sensitivity, and that the downstream effects showed a decrease p27 phosphorylation in both cases. We conclude that the chronic use of tamoxifen can lead to an increase in ROS that alters cell signaling and causing cell growth in the presence of tamoxifen, and that this resistant cell growth can be reversed with an alteration to the thioredoxin/Jab1 pathway.
73

The Investigation of Photocatalysts and Iron Based Materials in the Oxidation and the Adsorption of Toxic Organic and Chromium Materials

Jiang, Wenjun 13 November 2013 (has links)
The presences of heavy metals, organic contaminants and natural toxins in natural water bodies pose a serious threat to the environment and the health of living organisms. Therefore, there is a critical need to identify sustainable and environmentally friendly water treatment processes. In this dissertation, I focus on the fundamental studies of advanced oxidation processes and magnetic nano-materials as promising new technologies for water treatments. Advanced oxidation processes employ reactive oxygen species (ROS) which can lead to the mineralization of a number of pollutants and toxins. The rates of formation, steady-state concentrations, and kinetic parameters of hydroxyl radical and singlet oxygen produced by various TiO2 photocatalysts under UV or visible irradiations were measured using selective chemical probes. Hydroxyl radical is the dominant ROS, and its generation is dependent on experimental conditions. The optimal condition for generation of hydroxyl radical by of TiO2 coated glass microspheres is studied by response surface methodology, and the optimal conditions are applied for the degradation of dimethyl phthalate. Singlet oxygen (1O2) also plays an important role for advanced processes, so the degradation of microcystin-LR by rose bengal, an 1O2 sensitizer was studied. The measured bimolecular reaction rate constant between MC-LR and 1O2 is ~ 106 M-1 s-1 based on competition kinetics with furfuryl alcohol. The typical adsorbent needs separation after the treatment, while magnetic iron oxides can be easily removed by a magnetic field. Maghemite and humic acid coated magnetite (HA-Fe3O4) were synthesized, characterized and applied for chromium(VI) removal. The adsorption of chromium(VI) by maghemite and HA-Fe3O4 follow a pseudo-second-order kinetic process. The adsorption of chromium(VI) by maghemite is accurately modeled using adsorption isotherms, and solution pH and presence of humic acid influence adsorption. Humic acid coated magnetite can adsorb and reduce chromium(VI) to non-toxic chromium (III), and the reaction is not highly dependent on solution pH. The functional groups associated with humic acid act as ligands lead to the Cr(III) complex via a coupled reduction-complexation mechanism. Extended X-ray absorption fine structure spectroscopy demonstrates the Cr(III) in the Cr-loaded HA-Fe3O4 materials has six neighboring oxygen atoms in an octahedral geometry with average bond lengths of 1.98 Å.
74

Dual Role of Oxidative Stress in Head and Neck Cancer Chemotherapy: Cytotoxicity and Pro-survival Autophagy

Sobhakumari, Arya 01 July 2013 (has links)
Cancer cells are believed to exist in a condition of metabolic oxidative stress compared to normal cells because of inherent mitochondrial dysfunction. Cancer cells up regulate antioxidant defense mechanisms to combat the toxic effect of reactive oxygen species (ROS). Many anticancer agents block ROS detoxification mechanisms and utilize oxidative stress to cause cytotoxicity to cancer cells. However, ROS also up-regulate many pro-survival signaling pathways that may mediate resistance to chemotherapy. I hypothesize that ROS induces both cytotoxicity and pro-survival mechanisms in cells treated with chemotherapeutic agents such as the EGFR inhibitor erlotinib. This thesis explores how oxidative stress may induce both pro-survival and pro-death mechanisms in HNSCC cells and how this can be exploited to increase the cytotoxicity of erlotinib. The combined use of buthionine-[S,R]-sulfoximine, an inhibitor of glutathione and auranofin, an inhibitor of thioredoxin metabolism enhanced human head and neck cancer cell killing by a mechanism involving oxidative stress both in vitro and in vivo and sensitized cells to erlotinib in vitro. However, in other studies erlotinib as a single agent induced oxidative stress and this was mediated by NADPH oxidase 4 (NOX4). NOX4 mediated oxidative stress activated a process called autophagy which protected cancer cells from cytotoxic effect of erlotinib and inhibition of autophagy sensitized cells to erlotinib in vitro. These studies show that oxidative stress may have a dual role in cancer chemotherapy. ROS generated from various drug treatments can cause oxidative damage of cells culminating in cell death. However, it may also activate autophagy protecting cells against the stress and leading to decreased efficacy of the treatment. Hence inhibiting autophagy and hydroperoxide metabolism can be effective treatment modalities to enhance the cytotoxicity of erlotinib and achieve maximum therapeutic efficacy.
75

Differential toxicity of two murine endothelial cells to ROS duress: Understanding oxidative stress-induced blood-brain barrier dysfunction

Alamu, Olufemi Akinyinka January 2020 (has links)
Philosophiae Doctor - PhD / The blood-brain barrier (BBB) is a critical interface between the blood circulation and brain tissue which performs critical selection of circulating molecules that gain access to the brain tissue. Its unique ability to adjust to changes in the constituents of the blood circulation confer in the BBB a dynamic nature enabling changes in its properties to suit the homeostatic needs of the brain. Dysfunction of the BBB has been established to be pivotal to the initiation and/or maintenance of an array of neurological disorders, most of which involve the production of excess reactive oxygen species (ROS) and oxidative stress in their pathophysiology. Thus, clinical trials of exogenous antioxidant agents have been proposed and initiated, with most results being inconclusive. Extensive studies of the impact, capacity and plasticity of endogenous antioxidants in the cells that constitute the blood-brain barrier, especially the brain endothelial cells, therefore, became necessary for the rational choice, timing, and the mode of application of antioxidants in the management of oxidative stress-mediated neurological diseases.
76

Effects of cigarette smoke and smoke condensate on neutrophil extracellular trap formation

Bokaba, Refilwe Philadelphia January 2016 (has links)
Background: Neutrophil extracellular traps (NETs) constitute a network of chromatin fibres containing histone and antimicrobial peptides that are released by activated neutrophils. NETs protect the host against infection by trapping and facilitating phagocytosis of potentially harmful pathogens. Objectives: The aim of the current study was to investigate the effects cigarette smoke condensate (CSC) on phorbol-ester (PMA)-mediated NETosis in vitro, as well as the effects of cigarette. Methods: Isolated human blood neutrophils were exposed to PMA (6.25 ng/ml) in the presence or absence of CSC (40-80 μg/ml) for 90 min at 37oC. Alternatively neutrophils of non-smokers and smokers were activated with PMA (6.25 ng/ml) for 90 min at 37oC. NET formation was measured using a spectrofluorimetric procedure to detect extracellular DNA and fluorescence microscopy was used to visualize nets. Oxygen consumption by PMA-activated neutrophils was measured using an oxygen sensitive electrode. Cotinine levels were measured in smokers and non-smokers for objective confirmation of smoking status Results: Activation of neutrophils with PMA was associated with induction of NETosis that was significantly attenuated in the presence of CSC (40 and 80 μg/ml), with mean fluorescence intensities of 65% and 66% of that observed with untreated cells, respectively, and confirmed by fluorescence microscopy. The rate and magnitude of oxygen consumption by activated neutrophils pre-treated with CSC (80 μg/ml) was significantly less than that observed with untreated cells (73% of the control system), indicative of decreased production of reactive oxidant species in the presence of CSC. When comparing smokers and non- smokers, neutrophils from smokers showed a decrease in both oxygen consumption and the number of NET-forming cells consistent with attenuation of NET formation due to inhalation of cigarette smoke. Conclusion: The inhibition of NETosis observed in the presence of CSC and CS (in smokers) correlated with attenuation of oxygen consumption by PMA-activated neutrophils suggesting a mechanistic relationship between these events. Smoking-related attenuation of NETosis may impair host immune responses and increase the risk of respiratory infections, in vivo. / Dissertation (MSc)--University of Pretoria, 2016. / Immunology / MSc / Unrestricted
77

Wolbachia colonization in drosophila midguts and its effects on intestinal stem cells

Vaisman, Natalie 05 March 2022 (has links)
Wolbachia is a vertically transmitted, obligate intracellular bacterium infecting ~40% of all known species of arthropods, as well as filarial nematodes. The nature of Wolbachia-host interactions ranges from reproductive parasitism to increased fecundity and pathogen protection. Wolbachia reduces the ability of mosquitoes to transmit human pathogens, which is being explored as a novel method for the control of vector-borne diseases like Dengue and Zika. The mechanisms of Wolbachia blocking the transmission of these diseases are not fully understood. There are studies indicating that Wolbachia-induced changes in the insect immunity could block the virus, however there is no consensus in the literature. A necessary step in the transmission of these diseases is the viral entry into the insect vector. This occurs trough the gut epithelium, highlighting the importance of understanding the interaction of this tissue with microorganisms. We have recently shown that Wolbachia colonizes the Drosophila gut epithelium and affects the gut microbiome composition. Wolbachia’s presence did not affect the gene expression of immune effector molecules from the main regulators of gut immunity, Imd and ROS pathways. Our understanding of the mechanisms of Wolbachia’s colonization of the gut epithelium and modulation of gut microbiome are still very limited. This work characterizes Wolbachia’s kinetics of colonization in Drosophila midguts. Imaging analysis revealed that Wolbachia colonizes adult and larval midguts in different patterns. We have also characterized a preferential colonization in specific adult midgut sub-regions. We observed that Wolbachia patches are confined to specific midgut subregions, in a pattern similar to the arrangement of intestinal stem cell (ISC) clones. These results led us to hypothesize that Wolbachia colonizes Drosophila midguts by infecting intestinal progenitor cells and spreading vertically to their progeny with limited lateral transmission between neighboring cells. We provide evidence to support this hypothesis by showing that Wolbachia is present in intestinal progenitor cells in all stages of the fly’s life cycle as well as by analyzing the infection status of ISC clones and differentiated cells surrounding ISCs. Finally, we found that ISC proliferation is reduced by the intracellular presence of Wolbachia, which also decreases ISC tumor incidence triggered by the downregulation of Notch signaling specifically in ISCs. These findings will aid in our understanding of Wolbachia tropisms and its phenotypic consequences. It has been shown that in the Wolbachia wMelPop strain excessive growth of intracellular bacteria leads to damage to the host cell, suggesting a mechanism of controlling intracellular growth in other strains. To better understand the molecular mechanisms behind Wolbachia-Drosophila interactions, we turned to the gonads, as Wolbachia colonization of these tissues has been well characterized. We chose to investigate the interplay between Reactive Oxygen Species (ROS) and Wolbachia, as intracellular ROS could regulate bacterial density but also be affected by Wolbachia and play a role in symbiont-related phenotypes. Using direct and indirect measurements of ROS, we show that the pathogenic strain wMelPop increases ROS in the germarium, while the symbiotic strains wMel and wMelCS reduce ROS in the terminal filaments. None of the Wolbachia strains tested affected ROS levels in the testes. In addition, genetically altering ROS levels in the germline or systemically in the fly did not affect Wolbachia levels in the ovaries. We conclude that ROS does not significantly affect Wolbachia in the fruit fly gonads.
78

Neuroprotective and Neurotoxic Roles of Levodopa (L-DOPA) in Neurodegenerative Disorders Relating to Parkinson's Disease

Kostrzewa, R. M., Kostrzewa, J. P., Brus, R. 17 October 2002 (has links)
Summary. Despite its being the most efficacious drug for symptom reversal in Parkinson's disease (PD), there is concern that chronic levodopa (L-DOPA) treatment may be detrimental. In this paper we review the potential for L-DOPA to 1) autoxidize from a catechol to a quinone, and 2) generate other reactive oxygen species (ROS). Overt toxicity and neuroprotective effects of L-DOPA, both in vivo and in vitro, are described in the context of whether L-DOPA may accelerate or delay progression of human Parkinson's disease.
79

Palmitate induces reactive oxygen species production and β-cell dysfunction by activating nicotinamide adenine dinucleotide phosphate oxidase through Src signaling / パルミチン酸はSrcシグナルを介してNADPHオキシダーゼを活性化し活性酸素種産生とβ細胞機能障害をもたらす

Sato, Yuichi 24 March 2014 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(医学) / 乙第12816号 / 論医博第2078号 / 新制||医||1004(附属図書館) / 31303 / 京都大学大学院医学研究科医学専攻 / (主査)教授 岩井 一宏, 教授 長田 重一, 教授 川口 義弥 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DGAM
80

Effect of the Regulation of Oxidative Stress on Vocal Fold Wound Healing/ Expression of reactive oxygen species during wound healing of vocal folds in a rat model / 酸化ストレスの制御が声帯創傷治癒に及ぼす効果

Mizuta, Masanobu 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18851号 / 医博第3962号 / 新制||医||1007(附属図書館) / 31802 / 京都大学大学院医学研究科医学専攻 / (主査)教授 別所 和久, 教授 鈴木 茂彦, 教授 瀬原 淳子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM

Page generated in 0.1225 seconds