Spelling suggestions: "subject:"deactive absorption"" "subject:"eactive absorption""
1 |
The reactive absorption of CO2 into solutions of MEA/2-propanolDu Preez, Louis Jacobus 03 1900 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The discovery that the reaction of CO2 with primary amines in both aqueous and
non-aqueous media provides a viable chemical method for determining the effective
interfacial mass transfer area for separation column internals has lead to an increase
in the interest of studying the reaction kinetics and determining the governing
reaction rate expressions. For the absorption studies conducted on these systems,
many authors assumed that power rate law reaction kinetics govern the reaction
rate, which simplified the derivation of absorption correlations. This has already
been proven to be an over simplifying assumption, since many authors suggest a
non-elementary rate expression based on the pseudo-steady state hypothesis for the
reactive zwitterion intermediate to be valid.
An evaluation of the existing reaction rate expressions for the homogeneous liquid
phase reaction of CO2 and mono-ethanolamine (MEA) in a 2-propanol solvent system
was performed. The reaction rate profiles of CO2 and MEA at 25ºC, 30ºC and 35ºC,
and relative initial concentrations of [MEA]i = [CO2]i, [MEA]i = 2.5[CO2]i, [MEA]i =
4[CO2]i were determined by means of an isothermal CSTR set-up. Scavenging of the
unreacted MEA with benzoyl chloride provided the means to be able to stop the
reaction in the product stream. This in turn allowed for the construction of
concentration- and reaction rate profiles.
The reaction rate data was modelled on various rate expressions by means of a
MATLAB® non-linear estimation technique, employing the Levenberg-Marquard
algorithm for minimizing the loss function. It was concluded that the rate
expressions proposed in literature are insufficient and a rate expression derived
fundamentally from first principals is proposed:
[ ][ ] [ ] [ ][ ] [ ]2
MEA 1 2 2 -r = k CO RNH - k2 Z + k3 Z RNH2 - k4 S
where ki are the reaction rate constants, Z is the zwitterion reactive intermediate
and S the salt product of the overall reaction mechanism.
In order to be able to determine the effective interfacial mass transfer area, the
absorption rate per unit area or specific rate of absorption for the solute gas as a rate expression function of species concentration must firstly be determined. This is
achieved by performing experimental absorption runs on a gas-liquid contactor of
known surface area. This study incorporated the well known wetted wall
experimental set-up. The aim was to construct and implement a wetted wall set-up
and conduct absorption experiments for a gas side CO2 concentration range
stretching from pure CO2 to diluted gas mixtures absorbing into solutions of varying
MEA concentrations.
Validation of the set-up was done by performing experiments at similar conditions to
a previous study. The study then proceeded to determine the absolute and specific
absorption rates at CO2 mass percentages of 100%, 78%, 55% and 30% into solutions
of MEA concentrations of 0.25 and 0.3 mol/L. These runs were conducted at 25ºC
and 30ºC. The wetted wall was designed to facilitate absorption studies at column
heights of 60, 90 and 105mm. This allowed the investigation of the effect that
surface area and column height has on the absolute rate of absorption as well as the
CO2 and MEA concentrations in the liquid phase
It was found that the specific absorption rate is independent of contact time, which
is consistent with the rapid nature of the reaction. It was furthermore found that an
increase in MEA concentration caused an increase in the absorption rate. The effect
of temperature is linked with the solubility of CO2 in the solution. As the
temperature increases, the solubility of CO2 decreases, but the absorption rate
increases. The result is that it seems as if a change in temperature has no effect on
the absorption rate, when in actual fact it does. An increase in the amount of CO2
absorbed is noticed for an increase in wetted wall surface area. This is expected and
indicates that there is an increase in the amount of CO2 absorbed as the column
length increases.
Stopping the absorption reaction by means of MEA scavenging with benzoyl chloride
at various column heights will allow for the construction of a concentration profile
for both CO2 and MEA as a function of column height. These profiles will allow for
the derivation of a non-elementary rate expression governing the specific absorption
rate. This has been identified as ‘n area of great interest for future investigation. / AFRIKAANSE OPSOMMING: ‘n Groot navorsingsbelangstelling in die reaksiekinetika van CO2 en
monoethanolamien (MEA) het ontstaan sedert die ontdekking dat hierdie reaktiewe
sisteem ook ‘n goeie metode is vir die bepaling van die effektiewe
massaoordragsoppervlakte van gestruktureerde pakkingsmateriaal. Die klem val op
die bepaling van eerstens die mees geskikte en akkurate model om die
reaksiekinetika te beskryf wat dan gebruik kan word om die absorbsiekinetika
deeglik te karaktariseer. Sommige van die vorige navorsers het vereenvoudigende
aannames gemaak rakende die reaksiekinetika ten einde die bepaling van geskikte
absopsievergelykings te vergemaklik. Ander het gevind dat die nie-elementêre,
pseudo-gestadigde toestand hipotese gebasseer op die reaktiewe zwitterioon
tussenproduk van die reaksie ‘n meer verteenwoordigende kinetiese model is.
Hierdie studie is eerstens gemik op die evaluasie van die bestaande
reaksiekinetikavergelykings deur die homogene vloeistoffase reaksie van CO2 met
mono-etanolamien (MEA) in die oplosmiddel, 2-propanol te ondersoek. Die studie is
uitgevoer in ‘n isoterme CSTR sisteem by onderskeidelik 25ºC, 30ºC en 35ºC en MEA
konsentrasies van [MEA]i = [CO2]i, [MEA]i = 2.5[CO2]i en [MEA]i = 4[CO2]i.
Die voorgestelde reaksiekinetikavergelykings was gemodelleer met ‘n nie-lineêre
datapassingstegniek verskaf deur die sagtewarepakket, MATLAB® wat die Levenberg-
Marquard algoritme gebruik om die resfunksie te minimeer. Uit die teorie en
datapassing word die volgende vergelyking voorgestel:
[ ][ ] [ ] [ ][ ] [ ]2
MEA 1 2 2 -r = k CO RNH - k2 Z + k3 Z RNH2 - k4 S
waar ki die reaksietempokonstante voorstel, Z die zwitterioontussenproduk en S die
soutproduk.
Die eerste stap in die bepaling van die effektiewe massaoordragsarea van
gestruktureerde pakkingsmateriaal is om ‘n geskikte vergelyking of korrelasie vir die
spesifieke absorpsie van die gas te bepaal. Dit word gedoen deur absoprsie
eksperimente te doen op toerusting van bekende oppervlakarea. Hierdie studie het
die reeds bekende ‘wetted wall’ opstelling gebruik. Die hoof doelwit van hierdie absorpsiestudie was om ‘n werkende opstelling te bou en absorpsie eksperimente vir
CO2 konsentrasies wat strek van suiwer CO2 tot verdunde mengsels uit te voer. Die
konsentrasie MEA is ook gevarieër.
Die geskiktheid van die opstelling is eerstens getoets deur eksperimentele lopies uit
te voer by soorgelyke toestande as ‘n vorige studie. Die doel van die studie is om die
absolute en spesifieke absorpsietempos van CO2 by gasfase massapersentasies van
100%, 78%, 55% en 30% in MEA/2-propanol oplossings met MEA konsentrasies van
0.25 en 0.3 mol/L te bepaal. Die lopies is uigevoer by beide 25ºC en 30ºC. Die
opstelling is ook ontwerp om absorpsie eksperimente by verskillende kolomhoogtes
uit te voer. Hierdie hoogtes is 60, 90 en 105mm. Hierdie studie het tweedens
gefokus op die effek wat absorpsiearea en kolomhoogte op die absorpsietempo van
CO2 het.
Die resultate van die studie toon dat die absorpsietempo onafhanklik is van
kontaktyd. Dit stem saam met die vinnige reaksietempo. ‘n Toename in MEA
konsentrasie het ‘n toename in spesifieke absorpsietempo tot gevolg, terwyl die
effek van temperatuur gekoppel kan word aan die oplosbaarheid van CO2. Soos die
temperatuur toeneem, neem die absolute absorpsietempo toe, maar die
oplosbaarheid van CO2 neem af, dit het beide ‘n toenemende en afnemende effek op
die spesifieke absorpsietempo. Die hoeveelheid CO2 geabsorbeer neem toe met ‘n
toename in kolomhoogte.
Die konsentrasie MEA in die uitlaatvloeistof toon ‘n skynbare eksponensiële afname
met ‘n toename in kolomhoogte. ‘n Studie gemik om die konsentrasieprofiele van
CO2 en MEA as ‘n funksie van kolomhoogte te bepaal, word voorgestel.
Absorpsiemodelle en korrelasies kan dan afgelei word uit hierdie profiele, wat die
berekening van die effektiewe massaoordragsarea akkuraat sal maak. Dit sal deel
vorm van toekomstige navorsing.
|
2 |
Étude et modélisation du comportement chimique des aérosols issus d’un feu de sodium lors de leur dispersion atmosphérique / Study and modelling of chemical behavior of sodium fire aerosols during their atmospheric dispersionPlantamp, Alice 05 April 2016 (has links)
Dans le cadre du développement des réacteurs nucléaires à neutrons rapides refroidis au sodium, des études sont menées sur les conséquences d’un feu de sodium, et sur l'impact toxicologique de rejets éventuels d’aérosols vers l’atmosphère. La carbonatation des aérosols issus d’un feu de sodium entraîne une diminution de leur toxicité, à partir de leur rejet sous forme d'hydroxyde de sodium (NaOH). L’objectif est de développer et de valider expérimentalement un modèle cinétique de carbonatation des aérosols de NaOH. L’adaptation d’un modèle cinétique basé sur l'absorption réactive du CO2 atmosphérique et par la théorie du double film permet de décrire la carbonatation des aérosols de NaOH, initialement sous forme de gouttelettes de soude. Ce modèle définit les caractéristiques initiales des aérosols de soude en équilibre avec l'atmosphère. Il a été appliqué en considérant l'absorption du CO2 à la surface externe des particules. L’ensemble des variables du modèle ont été décrites et leurs équations explicitées. La validation du modèle cinétique a motivé la mise en place d’un dispositif expérimental dédié au suivi du comportement chimique d’aérosols issus d’un feu de sodium, dans des conditions contrôlées d’atmosphère réactive et de prélèvement d’aérosols. L’exploitation des nouvelles données expérimentales montre la compétition entre l’influence de la température, de la pression partielle en eau et en CO2. La confrontation des résultats expérimentaux avec le modèle développé a permis de le valider pour des humidités relatives supérieures à 30%. Enfin, le modèle cinétique a été explicité sous la forme d’une expression analytique pour une utilisation associée aux calculs de dispersion atmosphérique. / As part of the development of 4th generation Sodium cooled Fast Reactors, studies are conducted on the consequences of a sodium fire, including the toxicological impact of possible releases of aerosols into the atmosphere. The carbonation of aerosols from a sodium fire results in a decreased toxicity, from their release point in sodium hydroxide (NaOH). The objective is to develop and experimentally validate a kinetics model of NaOH aerosols carbonation. The kinetic model based on the reactive absorption of atmospheric CO2 and using the double film theory enables to describe the carbonation of NaOH aerosols, initially formed as soda droplets. This model defines the initial aerosol characteristics of soda in equilibrium with the atmosphere. It is applied by considering the absorption of CO2 at the particle’s external surface. All the model variables are described and their equations explained. The validation of this kinetic model has motivated the development of an experimental device dedicated to the monitoring of physicochemical behavior of aerosols from a sodium fire with a better control of conditions of reactive atmosphere and of aerosols sampling. The new experimental data show the competition between the influence of temperature, partial pressure of water and of CO2. The comparison between the experimental results validates the kinetic model based on reactive absorption for relative humidity over 30%. Finally, the kinetic model was adapted into the form of an analytic expression for its use in association with the atmospheric dispersion calculation.
|
3 |
A prototype dynamic model for the co-treatment of a high strength simple-organic industrial effluent and coal-mine drainageHarding, Theodor 25 January 2021 (has links)
This research study's the use of biological sulfate reduction technologies for the treatment of Sasol Secunda's coal-mine drainage (CMD) using Fischer-Tropsch Reaction Water (FTRW) as a cost-efficient carbon source. The research aims to develop a prototype dynamic model that describes this co-treatment of FTRW and CMD in both a continuously stirred tank reactor (CSTR) biological sulfate reduction (BSR) system and a BSR gas-lift (BSR-GL) integrated system. The BSR-GL system recovers elemental sulfur (S0 ) from the H2S produced and stripped from the BSR unit. Furthermore, this study aims to use the prototype model for a quantitative comparison of the CSTR-BSR and BSR-GL systems. Two bench-scale 5-litre CSTR-BSR and a 20-litre BSR-GL system were operated, under varying feed COD concentrations and hydraulic retention times (HRTs), to generate datasets for use in verification and a rudimentary validation of the prototype model. The BSR-GL integrated system includes 1) a 1-litre H2S gas reactive absorption (ABS) unit utilising an aqueous ferric solution for the recovery of elemental sulfur (S0 ) from sulfide and 2) ferrous biological oxidation reactor to regenerate ferric from the ferrous for re-supply to the ABS unit. The datasets generated in the experimental study allowed for the identification, mathematical modelling and reaction verification of 32 components that interact as reactants and products in 23 reactions observed in the two BSR systems. The prototype model is presented in a mass and charge balanced Gujer matrix that includes, i) 5 SRB mediated processes, ii) 2 liquid-gas mass transfer processes, iii) 3 processes describing the ABS and Fe2+ bio-oxidation units, iv) 4 processes describing sulfide and elemental sulfur oxidation and v) the S0 and poly-sulfide aqueous equilibrium and vi) 9 processes describing death regeneration and BPO hydrolysis. This prototype model was implemented in the DHI WEST® software for initial stage simulation trials. The experimental datasets allowed for the first-stage estimation of the best-fit reaction rate equations and the calibration of the kinetic parameters related to the 23 reactions, using MATLAB® curve fitting toolbox. A pre-processor that describe the pH and equilibrium chemistry of the components of the artificially prepared FTRW+CMD feed mixture batches under varying total concentrations have also been developed in this research. This was done to generated influent file to the DHI WEST® simulations that incorporated the dynamics related to the FTRW+CMD feed mixtures. The sulfate utilisation rate (gSO4 -2 .l-1 .d-1 ) of the GL-BSR and CSTR-BSR systems were compared to determine which system had the best sulfate removal. The results were found to be as follows; a. On comparison it was found that the sulfate substrate utilisation rate for the CSTR_BSR system is 39.28% of that of the BSR-GL_N2 system, where both systems were fed at feed mixture of COD of 2500mgCOD/l, where the COD:SO4 2- was 0.7, b. For the same systems fed a feed mixture of COD at 5000mgCOD/l (COD:SO4 2- = 0.7), the sulfate substrate utilisation rate for the CSTR_BSR system was found to be 17.86% less than that of the BSR_GLN2 system. c. Finally, it was also found that the substrate utilisation rate for the CSTR_BSR system was 30.06% less than that of the BSR_GLN2 system at Se of 4gCOD/l, for both systems fed substrate at 5000mgCOD/l. Thus, it can be concluded that the sulfate substrate utilisation rate for the BSR-GL system is higher than that of the CSTR_BSR system, for systems fed COD feed mixtures at 2.5 or 5gCOD/l where both systems have the same effluent substrate concentrations. However, the difference in the comparative substrate utilisation rate is less at higher feed substrate concentrations. This is the influence of substrate inhibition on the active SRB biomass, which increases with higher effluent substrate concentrations. Finally, this research found that the use of gas-lift reactor technologies is superior to CSTR technologies in the treatment of coal-mine drainage utilising biological sulfate reduction (BSR). The CSTR-BSR system, fed sulfate between 1.6 to 14gSO4 2- /l, produced effluent with high dissolved H2S concentrations, on average 285mgS/l and maximum at >600mgS/l. Releasing this effluent to the environment would be hazardous to aquatic and human health and corrosive to infrastructure. As such, the effluent from the CSTR-BSR system requires further treatment to stabilise the water for any use. The BSR-GL technology allows for the conversion of the H2S produced during BSR reactions to form elemental sulfur, which is a resource recovered from this process, thus complying to the circular economy aim of this study.
|
4 |
Modélisation par prise de moyenne volumique des phénomènes de transports en milieu poreux réactif : application au garnissage d’une colonne d’absorption gaz-liquide / Modeling of transport phenomena in reactive porous media using volume averaging method : Application to the packing of an absorption columnGirard, Coralie 07 March 2013 (has links)
Le Laboratoire de Thermique, Energétique et Procédés de Pau travaille en parallèle depuis plusieurs années sur les deux thématiques suivantes, la modélisation des réacteurs multifonctionnels et la modélisation des transports en milieux poreux. Dans ce travail, un modèle général de transports en milieu poreux multiphasique multiconstituant réactif est développé puis appliqué au cas particulier de l’absorption réactive afin de décrire les phénomènes se produisant au sein du garnissage. La modélisation débute par une description classique de chacune des phases continues grâce aux équations de conservation de la masse, de la quantité de mouvement et de l’énergie. Les phases fluides sont multiconstituantes et le siège de réactions homogènes. Bien qu’à cette échelle les mécanismes soient parfaitement décrits, le passage à la simulation impose une étape d’homogénéisation par prise de moyenne. Ce changement d’échelle conduit à un système d’équations à l’échelle locale. Le modèle est appliqué à l’absorption du dioxyde de carbone dans une solution aqueuse d’hydroxyde de sodium au sein d’une colonne garnie. Les simulations bidimensionnelles instationnaires fournissent des informations locales sur le procédé. Les résultats obtenus montrent une bonne adéquation avec la connaissance classique des mécanismes d’absorption réactive. / The “Laboratoire de Thermique, Energétique et Procédés de Pau” works on the two following subjects, modeling of multifunctional reactor and modeling of transport in porous media. In this work, a general model of transport in multiphase multi component reactive porous media is developed and then applied to the specific case of reactive absorption in order to describe the phenomena which occur within the packing. Modeling begins with a classic description of each continuous phase through the equations of conservation of mass, momentum and energy. The fluid phases are multi component and reactive. Although mechanisms are perfectly described at this scale, the simulation imposes a homogenization by volume averaging. This change of scale leads to a set of equations at the local scale. The model is applied to the absorption of carbon dioxide in an aqueous solution of sodium hydroxide within a packed column. Unsteady two-dimensional simulations provide local information about the process. The results obtained show a good agreement with the classical knowledge of reactive absorption mechanisms.
|
5 |
Reactive absorption kinetics of CO2 in alcoholic solutions of MEA: fundamental knowledge for determining effective interfacial mass transfer areaDu Preez, Louis Jacobus 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The reactive absorption rate of CO2 into non-aqueous solvents containing the primary amine,
mono-ethanolamine (MEA) is recognised as a suitable method for measuring the effective
interfacial mass transfer area of separation column internals such as random and structured
packing. Currently, this method is used under conditions where the concentration of MEA in
the liquid film is unaffected by the reaction and the liquid phase reaction is, therefore, assumed
to obey pseudo first order kinetics with respect to CO2. Under pseudo first order conditions,
the effect of surface depletion and renewal rates are not accounted for. Previous research
indicated that the effective area available for mass transfer is also dependent upon the rate of
surface renewal achieved within the liquid film. In order to study the effect of surface depletion
and renewal rates on the effective area, a method utilising a fast reaction with appreciable
depletion of the liquid phase reagent is required.
The homogeneous liquid phase reaction kinetics of CO2 with MEA n-Propanol as alcoholic
solvent was investigated in this study. A novel, in-situ Fourier Transform Infra-Red (FTIR)
method of analysis was developed to collect real time concentration data from reaction
initiation to equilibrium. The reaction was studied in a semi-batch reactor set-up at ambient
conditions (T = 25°C, 30°C and 35°C, P = 1 atm (abs)). The concentration ranges investigated
were [MEA]:[CO2] = 5:1 and 10:1. The concentration range investigated represents conditions
of significant MEA conversion. The reaction kinetic study confirmed the findings of previous research that the reaction of CO2
with MEA is best described by the zwitterion reactive intermediate reaction mechanism. Power
rate law and pseudo steady state hypothesis kinetic models (proposed in literature) were found
to be insufficient at describing the reaction kinetics accurately. Two fundamentally derived rate
expressions (based on the zwitterion reaction mechanism) provided a good quality model fit of
the experimental data for the conditions investigated. The rate constants of the full
fundamental model were independent of concentration and showed an Arrhenius temperature dependence. The shortened fundamental model rate constants showed a possible
concentration dependence, which raises doubt about its applicability.
The specific absorption rates (mol/m2.s) of CO2 into solutions of MEA/n-Propanol (0.2 M and
0.08 M, T = 25°C and 30°C, P = ±103 kPa) were investigated on a wetted wall experimental setup.
The experimental conditions were designed for a fast reaction in the liquid film to occur
with a degree of depletion of MEA in the liquid film. Both interfacial depletion and renewal of
MEA may be considered to occur. The gas phase resistance to mass transfer was determined to
be negligible. An increase in liquid turbulence caused an increase in the specific absorption rate
of CO2 which indicated that an increase in liquid turbulence causes an increase in effective mass
transfer area. Image analysis of the wetted wall gas-liquid interface confirmed the increase in
wave motion on the surface with an increase in liquid turbulence. The increase in wave motion
causes an increase in both interfacial and effective area.
A numerical solution strategy based on a concentration diffusion equation incorporating the
fundamentally derived rate expressions of this study is proposed for calculating the effective
area under conditions where surface depletion and renewal rates are significant. It is
recommended that the reaction kinetics of CO2 with MEA in solvents of varying liquid
properties is determined and the numerical technique proposed in this study used to calculate
effective area from absorption rates into these liquids. From the absorption data an effective
area correlation as a function of liquid properties may be derived in future. / AFRIKAANSE OPSOMMING: Die reaktiewe absorpsie van CO2 in nie-waterige oplossings van die primêre amien, monoetanolamien
(MEA) word erken as ‘n geskikte metode om die effektiewe massaoordragsarea
van gepakte skeidingskolomme te bepaal. Tans word die metode gebruik onder vinnige pseudo
eerste orde reaksietoestande met betrekking tot CO2. Die pseudo eersteorde aanname beteken
dat die konsentrasie van MEA in die vloeistoffilm onbeduidend beïnvloed word deur die reaksie
en effektief konstant bly. Onder pseudo eerste orde toestande word oppervlakverarming- en
oppervlakvernuwingseffekte nie in ag geneem nie, juis as gevolg van die konstante konsentrasie
van MEA in die vloeistoffilm. Daar is voorheen bevind dat oppervlakverarming en
oppervlakvernuwing ‘n beduidende invloed het op die beskikbare effektiewe
massaoordragsarea. Hierdie invloed kan slegs bestudeer word met ‘n vinnige reaksie in die
vloeistoffilm wat gepaard gaan met beduidende oppervlakverarming van die vloeistoffase
reagens. Die homogene vloeistoffase reaksiekinetika van CO2 met MEA in die alkohol oplosmiddel, n-
Propanol, is in hierdie studie ondersoek. ‘n Nuwe, in-situ Fourier Transform Infra-Rooi (FTIR)
metode van analiese is ontwikkel in hierdie ondersoek. Die reaksie is ondersoek in ‘n semienkelladings
reaktor met MEA wat gevoer is tot die reaktor om met die opgeloste CO2 te
reageer. Die FTIR metode meet spesiekonsentrasie as ‘n funksie van tyd sodat die
konsentrasieprofiele van CO2, MEA en een van die soutprodukte van die reaksie gebruik kan
word om verskillende reaksiesnelheidsvergelykings te modelleer. Die reaksie is ondersoek
onder matige toestande (T = 25°C, 30°C and 35°C, P = 1 atm (abs)). Die konsentrasiebereik van
die ondersoek was [MEA]:[CO2] = 5:1 en 10:1. Hierdie bereik is spesifiek gebruik sodat daar
beduidende omsetting van MEA kon plaasvind. Die reaksiekinetieka studie het, ter
ondersteuning van bestaande teorie, bevind dat die reaksie van CO2 met MEA in nie-waterige
oplosmiddels soos alkohole, beskyf word deur ‘n zwitterioon reaksiemeganisme. Die bestaande
reaksiesnelheids modelle (eksponensiële wet en pseudo gestadigde toestand hipotese) kon nie
die eksperimentele data met genoegsame akuraatheid beskryf nie. Twee nuwe reaksiesnelheidsvergelykings, afgelei vanaf eerste beginsels en gebaseer op die zwitterioon
meganisme, word voorgestel. Hierdie volle fundamentele model het goeie passings op die
eksperimentele data getoon oor die volledige temperatuur en konsentrasiebereik van hierdie
studie. Die reaksiekonstantes van die fundamentele model was onafhanklik van konsentrasie en
tipe oplosmiddel en het ‘n Arrhenius temperatuurafhanklikheid. Die verkorte fundamentele
model se reaksiekonstantes het ‘n moontlike konsentrasieafhanlikheid gewys. Dit plaas
onsekerheid op die fundamentele basis van hierdie model en kan dus slegs as ‘n eerste
benadering beskou word.
Die spesifieke absorpsietempos (mol/m2.s) van CO2 in MEA/n-Propanol oplossings (0.2 M en
0.08 M MEA, T = 25°C and 30°C, P = ±103 kPa) is ondersoek met ‘n benatte wand (‘wetted wall’)
eksperimentele opstelling. Die eksperimentele toestande is gekies sodat daar ‘n vinnige reaksie
in die vloeistoffilm plaasgevind het, met beide beduidende en nie-beduidende MEA omsetting.
Die doel met hierdie eksperimentele ontwerp was om die invloed van intervlakverarming en
intervlakvernuwing op die spesifieke absorpsietempo te ondersoek. Gas fase weerstand was
nie-beduidend onder die eksperimentele toestande nie. Beide intervlakverarming en
intervlakvernuwing gebeur gelyktydig en is waargeneem vanuit die eksperimentele data. ‘n
Beeldverwerkingstudie van die gas-vloeistof intervlak van die benatte wand het bevind dat daar
‘n toename in golfaksie op die vloeistof oppervlak is vir ‘n toename in vloeistof turbulensie.
Hierdie golfaksie dra by tot oppervlakvernuwing en ‘n toename in effektiewe
massaoordragsarea. ‘n Numeriese metode word voorgestel om die effektiewe area van beide die benatte wand en
gepakte kolomme te bepaal vanaf reaktiewe absorpsietempos. Die metode gebruik die
fundamentele reaksiesnelheidsvergelykings, bepaal in hierdie studie, in a konsentrasie
diffusievergelyking sodat oppervlakverarming en vernuwing in ag geneem kan word. Daar word
voorgestel dat die reaksiekinetika van CO2 met MEA in oplossings met verskillende fisiese
eienskappe (digtheid, oppervlakspanning en viskositeit) bepaal word sodat die numeriese
metode gebruik kan word om ‘n effektiewe area korrelasie as ‘n funksie van hierdie eienskappe
te bepaal.
|
6 |
Modélisation de l'absorption réactive multiconstituant : application au traitement des gaz acides par des solvants aux alcanolamines / Modelling of multicomponent reactive absorption : application to the acid gases treatment by alkanolamine solventsAhmadi, Aras 30 September 2011 (has links)
Les gaz issus de la combustion des énergies fossiles dans les centrales électriques contiennent une grande variété de polluants tels que les gaz-acides et ne peuvent être rejetés directement dans l'atmosphère. Ces polluants gazeux doivent être traités par des méthodes de captage en post combustion dans des colonnes d'absorption utilisant des solvants chimiques. L'objectif est donc de concevoir une unité d'élimination sélective des gaz-acides tels que CO2, H2S et COS en utilisant des solvants de la famille des alcanolamines. Cette thèse développe dans un premier temps, un modèle de non-équilibre, adapté aux systèmes multiconstituants électrolytiques et réactifs, pour la représentation des colonnes d'absorption réactive. Le modèle comporte des modules pour représenter la thermodynamique en espèces vraies (espèces ioniques et moléculaires), le transfert simultané de masse et de chaleur, et les réactions chimiques. Les équations généralisées de Maxwell-Stefan sont utilisées pour quantifier les interactions multiconstituants lors de la diffusion. Le schéma réactionnel est intégralement pris en compte dans la phase liquide, et les réactions chimiques peuvent être cinétiquement contrôlées ou à l'équilibre chimique instantané. La séparation réactive en régime permanent est ainsi simulée avec une description rigoureuse des phénomènes de réaction-diffusion dans les films diffusionnels. Dans un deuxième temps, une installation pilote de captage du CO2 par une solution aqueuse de diéthanolamine est mise en fluvre pour la validation expérimentale du modèle. La diéthanolamine a une forte réactivité vis-à-vis du CO2; ceci engendre un profil important de concentration du soluté dans la colonne. Le pilote est dédié à la validation de modèle, il est donc équipé de plusieurs unités d'échantillonnage gaz et liquide à différentes hauteurs de garnissage. Les profils longitudinaux de la concentration du CO2 en gaz et en liquide, de l'humidité absolue et de la température liquide peuvent être établis expérimentalement et être comparés avec ceux provenant de la simulation. L'outil de simulation validé devient alors un outil de prédiction de l'efficacité des unités réelles de captage par l'absorption réactive. / The exhaust gases coming from the combustion of fossil fuels in power plants contain a wide variety of pollutants such as acid gases and can not be discharged directly into the atmosphere. These gaseous pollutants must be treated by postcombustion capture methods in absorption columns using chemical solvents. The objective is then to design a selective removal unit of acid-gases such as CO2, H2S and COS by using solvents of the alkanolamine family. This thesis develops as the first step, a non-equilibrium model, adapted to multicomponent electrolytic and reactive systems, for the representation of reactive absorption columns. The model includes modules to represent the thermodynamics on the basis of true species (ionic and molecular species), the simultaneous heat and mass transfer, and the chemical reactions. The generalized equations of Maxwell-Stefan are used to take into account the multicomponent interactions during diffusion. The reaction scheme is fully included in the liquid phase, and the chemical reactions can be kinetically controlled or at instantaneous equilibrium. The reactive separation at steady-state conditions is then simulated with a rigorous description of the reaction-diffusion phenomena in diffusional films. In the second step, a pilot plant of CO2 capture with an aqueous solution of diethanolamine is implemented for experimental validation of the model. Diethanolamine has high reactivity with respect to CO2; this generates an important concentration profile of solute in the column. The pilot plant is dedicated to model validation; it is equipped with several gas and liquid sampling units at different heights of packing. The longitudinal profiles of the gas and liquid CO2 concentration, the absolute humidity and the liquid temperature can be established experimentally and compared with those from the simulation. The validated simulation tool then becomes a tool to predict the effectiveness of real capture units by reactive absorption.
|
7 |
Etude et modélisation de méthodes de séparation du méthane et de H2S, sélection d'une méthode favorisant la valorisation de H2S / Study and modeling of separation methods H2S from methane, selection of a method favoring H2S valorizationCherif, Hamadi 08 December 2016 (has links)
Le biogaz doit être purifié pour devenir un combustible renouvelable. De nombreux traitements actuels ne sont pas satisfaisants car, pour des raisons de coûts les procédés de séparation privilégiés aboutissent souvent au rejet direct ou indirect du sulfure d'hydrogène (H2S) à l’atmosphère, c’est le cas de la séparation à l’eau sous pression. Les objectifs de la thèse portent d’abord sur l’étude et la modélisation des méthodes connues de séparation de l'hydrogène sulfuré du méthane. Les concentrations typiques varient de 200 à 5000 ppm, et la séparation devra réduire la teneur résiduelle en H2S à moins de 1 ppm. Parallèlement seront étudiées les méthodes de traitement de H2S. Une fois la (ou les) méthode(s) de séparation sélectionnée(s), des essais de validation seront effectués sur un système traitant de l’ordre de 85 Nm3/h de méthane où seront injectées des quantités de H2S variant entre 1 et 100 ppm.Cette thèse requiert des modélisations réalistes sous Aspen Plus® ou sous un code équivalent pour établir a priori des efficacités de séparation selon différentes conditions opératoires et en prenant en compte le paramètre température. L’énergie dépensée pour la séparation effective sera un des critères fort de la comparaison, de même que l’économie de matière.Une approche système est indispensable pour étudier la rétroaction de la méthode de valorisation du H2S sur la ou les méthodes séparatives. A priori c’est aussi l’outil Aspen Plus® ou équivalent qui permettra cette approche système.L’étude du procédé sera menée selon la double approche modélisation et expérimentation, pour l’étude expérimentale des méthodes séparatives, l’échelle du banc sera semi-industrielle et le banc permettra d’étudier les méthodes de séparation jusqu’à -90°C. / Biogas must be purified for becoming a renewable fuel. At now, the most part of the purification techniques are not satisfactory because they imply hydrogen sulfides (H2S) rejection to the atmosphere. One example of these methods is the treatment with high pressure water. The first objective of the thesis is modeling the conventional methods for separating H2S from methane. Typical concentrations of H2S in methane vary from 200 to 5000 pm. Separation methods must decrease the concentration of H2S in methane to less than 1 ppm. At the same time, methods for H2S treatment will be studied.Once the most appropriated separation methods will be selected, some test will be carried out on a pilot plant capable of treating 85 Nm3/h of methane, where quantities of H2S ranging from 1 and 100 ppm will be injected. These tests will allow validating the modeling of the separation process. On the basis of the obtained results, a specific test bench will be conceived and constructed for validating the selected process.The thesis work requires simulating the separation process using the software Aspen Plus® or an equivalent one. The effectiveness of different operative conditions will be tested, varying also the parameter temperature. The energy necessary for the separation will be one of the most important criteria for the comparison, as well as the mass consumption of the different fluids involved in the process.A system approach is fundamental for evaluating the backward effect of the H2S valorization method on the separation techniques. The process simulator (Aspen Plus® or equivalent) will allow the system approach.The study will involve modeling and experimental parts. The experimental part will be carried out taking advantage of a semi-industrial size test bench, allowing studying the separation methods down to -90°C.
|
Page generated in 0.0798 seconds