Spelling suggestions: "subject:"deactive ion etc"" "subject:"deactive ion eth""
1 |
Three-Dimensional Passivated-Electrode Insulator-Based Dielectrophoresis (3D-PiDEP)Zellner, Phillip Andrew 25 July 2013 (has links)
The focus of this research is the isolation of waterborne pathogens which are one of the grand challenges to human health, costing the lives of about 2.5 million people worldwide each year. The aim was to develop new microfluidic techniques for selectively concentrating and detecting waterborne pathogens. Detection of microbes in water can greatly help reduce deaths; however, analytical instruments cannot readily detect them due to the extreme dilution of these microbes, and hence, require significant sample concentration. Current methods are expensive and either require days to process or are not sufficiently robust for water monitoring. Microfluidic chips based on insulator-based dielectrophoresis (iDEP) provide a promising solution to these problems and have been previously used to selectively concentrate biological particle such as bacteria. The microfluidic devices in this work were created with a 3D mircofabrication technique, which we also developed as part of this project. The core process of the technique is the etching of 3D structures in silicon with a single plasma etch utilizing an effect known as reactive ion etch lag (RIE lag). Using this unique process, 3D devices are fabricated in both silicon and the polymer polydimenthylsiloxane (PDMS). Using both numerical modeling and experimental results, we show how these 3D structures enhance the performance of the dielectrophoretic devices. The main findings indicate that 3D structures can help reduce Joule heating in the devices and lower the applied voltage necessary to operate the devices. Additionally, within this work, we develop a new dielectrophoresis technique called off-chip passivated-electrode, insulator-based dielectrophoresis microchip (O"DEP). This technique combines the sensitivity of electrode-based dielectrophoresis (eDEP) with the high-throughput and inexpensive device characteristics of insulator-based dielectrophoresis. The result is a cartridge based system which is accessible, economical, high-performance, and high-throughput technologies allowing timely detection of pathogenic bacteria. / Ph. D.
|
2 |
Mid-wave infrared HgCdTe photodiode technology based on plasma induced p-to-n type conversionWhite, John Kenton January 2005 (has links)
[Truncated abstract] Infrared photodiodes fabricated in HgCdTe achieve near-ideal performance, however, in comparison with other semiconductors, processing techniques for HgCdTe are expensive and have relatively low yields. Reactive-ion-etching (RIE) in a H2⁄CH4 gas mixture, a process primarily used for material removal, will cause p-to-n type conversion in HgCdTe. It has been shown, by several groups, that infrared photodiodes fabricated with a process technology based on RIE p-to-n type-conversion achieve high yields with state-of-the-art performance. For this technology to be accepted RIE formed n-on-p photodiodes must demonstrate junction stability under normal operating conditions. Along with a stable junction, a compatible passivation technology that is able to withstand processing and operation temperatures is required. This thesis investigates the RIE p-to-n type-conversion mechanism in HgCdTe with the aim of demonstrating bake stable RIE formed junctions, and gaining an insight to the processes by which RIE type-conversion occurs. In pursuing these aims, two complimentary objectives were required, namely, the development of a passivation technology compatible with RIE formed junctions, and the development of a detailed I-V/Rd-V model for HgCdTe photodiodes. As a result of these objectives, this thesis presents a double-layer ZnS on CdTe passivation technology with which stable RIE-formed n-on-p junctions in HgCdTe are demonstrated. Using this process technology, mid-wave infrared (MWIR) HgCdTe photodiodes have been fabricated and subjected to a bake in vacuum at 80°C for 175 hours, after which there is negligible degradation in the zero-bias Dynamic-Resistance Area product (RoA) from the pre-bake values
|
3 |
High χ block copolymers for sub 20 nm pitch patterning: synthesis, solvent annealing, directed self assembly, and selective block removalJarnagin, Nathan D. 13 January 2014 (has links)
Block copolymer (BCP) thin film patterns, generated using directed self-assembly (DSA) of diblock copolymers, have shown excellent promise as templates for semiconductor device manufacturing since they have the potential to produce feature pitches and sizes well below 20 nm and 10 nm, respectively, using current 193 nm optical lithography. The goal of this work is to explore block copolymers with sufficient thermodynamics driving force (as described by the Flory Huggins interaction parameter, χ) for phase separation at these smallest lengths scales. Here, poly(styrene)-b-poly(hydroxystyrene) is investigated since the PHOST domain is known to form extensive hydrogen bond networks resulting in increased χ due to this strong enthalpic interaction.
In this work, nitroxide mediated polymerization (NMP) techniques were utilized to produce PS-b-PHOST diblock copolymers with a range of molecular weights (5000-30000) with low PDI approaching 1.2. The phase separation of low molecular weight PS-b-PHOST on neutral underlayer substrates via solvent annealing provided thin film vertical lamellae with 13 nm pitch. These results illustrate the improved resolution of PS-b-PHOST compared with the current industry standard of PS-b-PMMA (with 20 nm pitch). The directed self assembly of lamellar PS-b-PHOST patterns with 18 nm pitch via graphoepitaxy is demonstrated.
Also, a highly selective atomic layer deposition (ALD) and etch technique was investigated which provided selective block removal of (PS-b-PHOST) block copolymer patterns which initially exhibited no inherent etch contrast. In this process, the PS domain is removed leaving a high fidelity etch relief pattern of the original block copolymer template. Finally, an alternative system is presented, namely Poly(trimethylsilylstyrene)-block-poly(hydroxystyrene) (PTMSS-b-PHOST), which utilizes silicon containing functionality in one of the blocks, providing high etch contrast. PTMSS-b-PHOST patterns were also exposed to oxygen plasma allowing selective block removal of the PS domain without the need for additional ALD processing steps.
|
Page generated in 0.0583 seconds