Spelling suggestions: "subject:"real time aprocessing"" "subject:"real time eprocessing""
11 |
PACKETIZED TELEMETRY INCREASES FEEDBACK SYSTEM RESPONSE TIME IN A HIGH ENERGY PHYSICS APPLICATIONWoolridge, Daniel “Shane” 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / A digital feedback system used to monitor and control a high energy electron beam’s orbit
and stability in a VUV and X-ray storage ring will realize a 10 fold increase in the
feedback system response time using packetized (IRIG 107-98) telemetry. The
improvement in feedback time will provide a significant improvement in the level of orbit
stability.
This paper discusses the advantages of using a packetizing standard and high speed data
acquisition as a cost effective way to support the scientific community in their real time
processing needs.
|
12 |
Evaluation of Reverb with Eq as a Tool for Egocentric Distance Perception in GamesWestling, Johan January 2016 (has links)
<p>Validerat; 20160705 (global_studentproject_submitter)</p>
|
13 |
A benchmark suite for distributed stream processing systems / Um benchmark suite para sistemas distribuídos de stream processingBordin, Maycon Viana January 2017 (has links)
Um dado por si só não possui valor algum, a menos que ele seja interpretado, contextualizado e agregado com outros dados, para então possuir valor, tornando-o uma informação. Em algumas classes de aplicações o valor não está apenas na informação, mas também na velocidade com que essa informação é obtida. As negociações de alta frequência (NAF) são um bom exemplo onde a lucratividade é diretamente proporcional a latência (LOVELESS; STOIKOV; WAEBER, 2013). Com a evolução do hardware e de ferramentas de processamento de dados diversas aplicações que antes levavam horas para produzir resultados, hoje precisam produzir resultados em questão de minutos ou segundos (BARLOW, 2013). Este tipo de aplicação tem como característica, além da necessidade de processamento em tempo-real ou quase real, a ingestão contínua de grandes e ilimitadas quantidades de dados na forma de tuplas ou eventos. A crescente demanda por aplicações com esses requisitos levou a criação de sistemas que disponibilizam um modelo de programação que abstrai detalhes como escalonamento, tolerância a falhas, processamento e otimização de consultas. Estes sistemas são conhecidos como Stream Processing Systems (SPS), Data Stream Management Systems (DSMS) (CHAKRAVARTHY, 2009) ou Stream Processing Engines (SPE) (ABADI et al., 2005). Ultimamente estes sistemas adotaram uma arquitetura distribuída como forma de lidar com as quantidades cada vez maiores de dados (ZAHARIA et al., 2012). Entre estes sistemas estão S4, Storm, Spark Streaming, Flink Streaming e mais recentemente Samza e Apache Beam. Estes sistemas modelam o processamento de dados através de um grafo de fluxo com vértices representando os operadores e as arestas representando os data streams. Mas as similaridades não vão muito além disso, pois cada sistema possui suas particularidades com relação aos mecanismos de tolerância e recuperação a falhas, escalonamento e paralelismo de operadores, e padrões de comunicação. Neste senário seria útil possuir uma ferramenta para a comparação destes sistemas em diferentes workloads, para auxiliar na seleção da plataforma mais adequada para um trabalho específico. Este trabalho propõe um benchmark composto por aplicações de diferentes áreas, bem como um framework para o desenvolvimento e avaliação de SPSs distribuídos. / Recently a new application domain characterized by the continuous and low-latency processing of large volumes of data has been gaining attention. The growing number of applications of such genre has led to the creation of Stream Processing Systems (SPSs), systems that abstract the details of real-time applications from the developer. More recently, the ever increasing volumes of data to be processed gave rise to distributed SPSs. Currently there are in the market several distributed SPSs, however the existing benchmarks designed for the evaluation this kind of system covers only a few applications and workloads, while these systems have a much wider set of applications. In this work a benchmark for stream processing systems is proposed. Based on a survey of several papers with real-time and stream applications, the most used applications and areas were outlined, as well as the most used metrics in the performance evaluation of such applications. With these information the metrics of the benchmark were selected as well as a list of possible application to be part of the benchmark. Those passed through a workload characterization in order to select a diverse set of applications. To ease the evaluation of SPSs a framework was created with an API to generalize the application development and collect metrics, with the possibility of extending it to support other platforms in the future. To prove the usefulness of the benchmark, a subset of the applications were executed on Storm and Spark using the Azure Platform and the results have demonstrated the usefulness of the benchmark suite in comparing these systems.
|
14 |
Assessing Apache Spark Streaming with Scientific DataDahal, Janak 06 August 2018 (has links)
Processing real-world data requires the ability to analyze data in real-time. Data processing engines like Hadoop come short when results are needed on the fly. Apache Spark's streaming library is increasingly becoming a popular choice as it can stream and analyze a significant amount of data. To showcase and assess the ability of Spark various metrics were designed and operated using data collected from the USGODAE data catalog. The latency of streaming in Apache Spark was measured and analyzed against many nodes in the cluster. Scalability was monitored by adding and removing nodes in the middle of a streaming job. Fault tolerance was verified by stopping nodes in the middle of a job and making sure that the job was rescheduled and completed on other node/s. A full stack application was designed that would automate data collection, data processing and visualizing the results. Google Maps API was used to visualize results by color coding the world map with values from various analytics.
|
15 |
A benchmark suite for distributed stream processing systems / Um benchmark suite para sistemas distribuídos de stream processingBordin, Maycon Viana January 2017 (has links)
Um dado por si só não possui valor algum, a menos que ele seja interpretado, contextualizado e agregado com outros dados, para então possuir valor, tornando-o uma informação. Em algumas classes de aplicações o valor não está apenas na informação, mas também na velocidade com que essa informação é obtida. As negociações de alta frequência (NAF) são um bom exemplo onde a lucratividade é diretamente proporcional a latência (LOVELESS; STOIKOV; WAEBER, 2013). Com a evolução do hardware e de ferramentas de processamento de dados diversas aplicações que antes levavam horas para produzir resultados, hoje precisam produzir resultados em questão de minutos ou segundos (BARLOW, 2013). Este tipo de aplicação tem como característica, além da necessidade de processamento em tempo-real ou quase real, a ingestão contínua de grandes e ilimitadas quantidades de dados na forma de tuplas ou eventos. A crescente demanda por aplicações com esses requisitos levou a criação de sistemas que disponibilizam um modelo de programação que abstrai detalhes como escalonamento, tolerância a falhas, processamento e otimização de consultas. Estes sistemas são conhecidos como Stream Processing Systems (SPS), Data Stream Management Systems (DSMS) (CHAKRAVARTHY, 2009) ou Stream Processing Engines (SPE) (ABADI et al., 2005). Ultimamente estes sistemas adotaram uma arquitetura distribuída como forma de lidar com as quantidades cada vez maiores de dados (ZAHARIA et al., 2012). Entre estes sistemas estão S4, Storm, Spark Streaming, Flink Streaming e mais recentemente Samza e Apache Beam. Estes sistemas modelam o processamento de dados através de um grafo de fluxo com vértices representando os operadores e as arestas representando os data streams. Mas as similaridades não vão muito além disso, pois cada sistema possui suas particularidades com relação aos mecanismos de tolerância e recuperação a falhas, escalonamento e paralelismo de operadores, e padrões de comunicação. Neste senário seria útil possuir uma ferramenta para a comparação destes sistemas em diferentes workloads, para auxiliar na seleção da plataforma mais adequada para um trabalho específico. Este trabalho propõe um benchmark composto por aplicações de diferentes áreas, bem como um framework para o desenvolvimento e avaliação de SPSs distribuídos. / Recently a new application domain characterized by the continuous and low-latency processing of large volumes of data has been gaining attention. The growing number of applications of such genre has led to the creation of Stream Processing Systems (SPSs), systems that abstract the details of real-time applications from the developer. More recently, the ever increasing volumes of data to be processed gave rise to distributed SPSs. Currently there are in the market several distributed SPSs, however the existing benchmarks designed for the evaluation this kind of system covers only a few applications and workloads, while these systems have a much wider set of applications. In this work a benchmark for stream processing systems is proposed. Based on a survey of several papers with real-time and stream applications, the most used applications and areas were outlined, as well as the most used metrics in the performance evaluation of such applications. With these information the metrics of the benchmark were selected as well as a list of possible application to be part of the benchmark. Those passed through a workload characterization in order to select a diverse set of applications. To ease the evaluation of SPSs a framework was created with an API to generalize the application development and collect metrics, with the possibility of extending it to support other platforms in the future. To prove the usefulness of the benchmark, a subset of the applications were executed on Storm and Spark using the Azure Platform and the results have demonstrated the usefulness of the benchmark suite in comparing these systems.
|
16 |
No Doors: A Personal Exploration of Movement and TechnologyJanuary 2018 (has links)
abstract: No Doors: A Personal Exploration of Movement and Technology, details the interdisciplinary strategies that were used in the making of a series of interactive/reactive/immersive (IRI) installations that drew audiences into an experience and encouraged active observation and/or participation. The interdisciplinary IRI installations described in this document combined movement, sculpture, production design, and various forms of media and technology with environments in which participants had agency. In the process of developing this work, the artist considered several concepts and practices: site-specific, various technologies, real-time processing, participant experience, embodied exploration, and hidden activity. Throughout the creative process, the researcher conducted a series of four focus labs in which a small audience was invited to engage with the work as a way of gathering data about the effectiveness of the installations in facilitating active audience observation and/or participation. The data collected after each focus lab informed the revision of the work in preparation for the next focus lab, with the ultimate result being the production of a final exhibition of five interdisciplinary IRI installations. The installations detailed in this document were loosely based on five elements: water, fire, air, earth, and spirit. / Dissertation/Thesis / Masters Thesis Dance 2018
|
17 |
A benchmark suite for distributed stream processing systems / Um benchmark suite para sistemas distribuídos de stream processingBordin, Maycon Viana January 2017 (has links)
Um dado por si só não possui valor algum, a menos que ele seja interpretado, contextualizado e agregado com outros dados, para então possuir valor, tornando-o uma informação. Em algumas classes de aplicações o valor não está apenas na informação, mas também na velocidade com que essa informação é obtida. As negociações de alta frequência (NAF) são um bom exemplo onde a lucratividade é diretamente proporcional a latência (LOVELESS; STOIKOV; WAEBER, 2013). Com a evolução do hardware e de ferramentas de processamento de dados diversas aplicações que antes levavam horas para produzir resultados, hoje precisam produzir resultados em questão de minutos ou segundos (BARLOW, 2013). Este tipo de aplicação tem como característica, além da necessidade de processamento em tempo-real ou quase real, a ingestão contínua de grandes e ilimitadas quantidades de dados na forma de tuplas ou eventos. A crescente demanda por aplicações com esses requisitos levou a criação de sistemas que disponibilizam um modelo de programação que abstrai detalhes como escalonamento, tolerância a falhas, processamento e otimização de consultas. Estes sistemas são conhecidos como Stream Processing Systems (SPS), Data Stream Management Systems (DSMS) (CHAKRAVARTHY, 2009) ou Stream Processing Engines (SPE) (ABADI et al., 2005). Ultimamente estes sistemas adotaram uma arquitetura distribuída como forma de lidar com as quantidades cada vez maiores de dados (ZAHARIA et al., 2012). Entre estes sistemas estão S4, Storm, Spark Streaming, Flink Streaming e mais recentemente Samza e Apache Beam. Estes sistemas modelam o processamento de dados através de um grafo de fluxo com vértices representando os operadores e as arestas representando os data streams. Mas as similaridades não vão muito além disso, pois cada sistema possui suas particularidades com relação aos mecanismos de tolerância e recuperação a falhas, escalonamento e paralelismo de operadores, e padrões de comunicação. Neste senário seria útil possuir uma ferramenta para a comparação destes sistemas em diferentes workloads, para auxiliar na seleção da plataforma mais adequada para um trabalho específico. Este trabalho propõe um benchmark composto por aplicações de diferentes áreas, bem como um framework para o desenvolvimento e avaliação de SPSs distribuídos. / Recently a new application domain characterized by the continuous and low-latency processing of large volumes of data has been gaining attention. The growing number of applications of such genre has led to the creation of Stream Processing Systems (SPSs), systems that abstract the details of real-time applications from the developer. More recently, the ever increasing volumes of data to be processed gave rise to distributed SPSs. Currently there are in the market several distributed SPSs, however the existing benchmarks designed for the evaluation this kind of system covers only a few applications and workloads, while these systems have a much wider set of applications. In this work a benchmark for stream processing systems is proposed. Based on a survey of several papers with real-time and stream applications, the most used applications and areas were outlined, as well as the most used metrics in the performance evaluation of such applications. With these information the metrics of the benchmark were selected as well as a list of possible application to be part of the benchmark. Those passed through a workload characterization in order to select a diverse set of applications. To ease the evaluation of SPSs a framework was created with an API to generalize the application development and collect metrics, with the possibility of extending it to support other platforms in the future. To prove the usefulness of the benchmark, a subset of the applications were executed on Storm and Spark using the Azure Platform and the results have demonstrated the usefulness of the benchmark suite in comparing these systems.
|
18 |
The effect of referent similarity and phonological similarity on concurrent word learningZhao, Libo 01 May 2013 (has links)
Similarity has been regarded as a primary means by which lexical representations are organized, and hence an important determinant of processing interactions between lexical items. A central question on lexical-semantics similarity is how it influences lexical processing. There have been much fewer investigations, however, on how lexical-semantic similarity might influence novel word learning. This dissertation work aimed to fill this gap by addressing one kind of lexical-semantic similarity, similarity among the novel words that are being learned concurrently (concurrent similarity), on the learning of phonological word forms. Importantly, it aimed to use tests that eliminated the real time processing confound at test so as to provide convincing evidence on whether learning was indeed affected by similarity.
The first part of the dissertation addressed the effect of concurrent referent similarity on the learning of the phonological word forms. Experiment 1 used a naming test to provide evidence on the direction of the effect. Experiment 2 and Experiment 3 used the stem completion test and the recognition from mis-pronunciation test that controlled for real time processing between conditions. Then a 4-layer Hebbian Normalized Recurrent Network was also developed to provide even more convincing evidence on whether learning was affected (the connection weights). Consistently across the three tasks and the simulation, a detrimental effect of referent similarity on the phonological word form learning was revealed.
The second part of the dissertation addressed the effect of cohort similarity on the learning of the phonological word forms. The recognition from mis-pronunciation on partial words was developed to control for real time processing between conditions so as to capture the effect of learning. We examined the effect of cohort similarity at different syllable positions and found a detrimental effect at the second syllable and non-effect at the third syllable. This is consistent with the previous finding that competition among cohorts diminishes as the stimulus is received, suggesting that the effect of cohort similarity depends on the status of competition dynamics among cohorts.
The theoretical and methodological implications of this study are discussed.
|
19 |
Situating SoundPenrose, Joshua Adam 29 October 2010 (has links)
No description available.
|
20 |
IMPLEMENTATION OF DGPS AS A FLIGHT TEST PERFORMANCE MEASUREMENT TOOLPedroza, Albert 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The accurate determination of test aircraft position and velocity is a very strong requirement in several certification and development flight test applications. This requirement often requires availability of test ranges properly instrumented with optical or radar tracking systems, precision time for data reduction and dependency on environmental and meteorological conditions. The capabilities of GPS (Global Positioning System) technology, in terms of data accuracy, speed of data availability and reduction of test operating cost, moved Bombardier Flight Test Center to make an investment and integrate a system utilizing GPS for extensive use in flight and ground test activity. Through the use of differential GPS (DGPS) procedures, Bombardier Flight Test Center was able to implement a complete system which could provide real-time data results to a very acceptable output rate and accuracy. Furthermore, the system was capable of providing post-processed data results which greatly exceeded required output rate and accuracy. Regardless of the type of aircraft testing conducted, the real-time or post-processed data could be generated for the same test. After conducting various types of testing, Bombardier Flight Test Center has accepted the DGPS as an acceptable and proper flight and ground test measurement tool for its various aircraft test platforms.
|
Page generated in 0.0798 seconds