• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution of Recombination: RecBCD and AddAB in Bacteria

Gurung, Deepti January 2019 (has links)
No description available.
2

Identification of pre-synaptic processing proteins from Bacteroides fragilis

Parry, Frances Louise January 2011 (has links)
The repair of DNA double-strand breaks (DSBs) is required for the survival of all organisms. In bacteria, DNA DSBs can occur during normal housekeeping processes such as DNA replication or by exogenous damage due to chemicals or radiation. DSBs will compromise the integrity of the genome if left un-repaired, and can be fatal to an organism. Repair of DSBs by homologous recombination (HR) replicates missing chromosomal regions before joining of the separated DNA ends. In Escherichia coli the HR repair steps are; pre-synapsis, synapsis and post-synapsis. In the pre-synaptic stage a DSB is processed into a 3′ single-strand overhang, the substrate required for strand invasion in the synapsis stage and the eventual repair of the DSB. At present there are three identified pre-synapsis systems involved in recombination in bacteria; represented by the AdnAB, AddAB and the RecBCD protein complexes. Each system functions in a similar manner but differ in the physical composition of the machinery. This project investigated the pre-synaptic system of Bacteroides fragilis NCTC9343. Genes encoding putative pre-synapsis proteins were initially identified through analysis of the NCTC9343 genome. The function of these proteins was investigated in vivo by rescue of a repair-deficient strain of E. coli. This demonstrated that Bacteroides fragilis encodes a two component system, where both genes products are required to work in concert for pre-synaptic processing of DSBs. The identified genes were BF2192 and BF2191, and have been renamed addA and addB, respectively. To further examine the role of the AddAB proteins in DSB repair, a Bacteroides fragilis strain with a deletion of addAB was constructed and shown to be extremely sensitive to DNA damaging agents. The AddAB complex was purified and found to be an ATP-dependant helicase and exonuclease that acted on double-stranded DNA ends. In conclusion, this project has identified the proteins involved in pre-synaptic processing of DSBs in B. fragilis NCTC9343, consisting of AddAB homologues, and shown their protective role in repair of DNA damage.
3

Quantitative detection of low abundance gene expression products in individual E. coli cells

Taylor, Hannah Louise January 2018 (has links)
Stochastic fluctuations in mRNA and protein copy number between cells are inevitable during the process gene expression, even when cells carry identical chromosomes. Such fluctuations are able to impact the phenotypic fate of the cell, and are known to have greater impact when the copy number of the molecule involved is low. Additionally, up to 50% of proteins in Escherichia coli are present in the cell at a level of 10 molecules per cell or fewer (Taniguchi et al. 2010). As such, quantification of low copy number gene expression products and their distribution in cellular populations is key in understanding the process of gene expression. Currently, there are few techniques that allow investigation with the single cell and single molecule resolution required to study low copy number gene expression products. This work presents a novel method for protein quantification at the single molecule level, Quantitative HaloTag-TMR labelling, and uses the technique to quantify the absolute numbers of the low copy number RecB, RecC and RecD subunits of the bacterial DNA repair enzyme RecBCD, finding each subunit is present at between two and eight molecules per cell with mean numbers per cell of 4.9, 4.7 and 4.5 respectively. Additionally single molecule mRNA FISH was used to quantify the mRNA levels of recB and recD within cells, with means of 0.21 and 0.31 mRNA per cell being observed respectively. Finally this work presents a new method for use detecting both mRNA and protein simultaneously in individual cells by combining the HaloTag and FISH protocols to give HaloFISH. This work introduces two novel techniques that allow for single cell examination of gene expression, and investigates RecBCD expression at the single molecule level.
4

Streamlined Extract Preparation for E. coli-Based Cell-Free Protein Synthesis and Rapid Site-Specific Incorporation of Unnatural Amino Acids in Proteins

Shrestha, Prashanta 07 December 2012 (has links)
This thesis reports the viability of E. coli cell extracts prepared using equipment that is both common to biotechnology laboratories and able to process small volume samples and expression of proteins containing unnatural amino acids (UAAs) at higher level using PCR amplified linear DNA templates (LETs) in cell-free protein synthesis (CFPS) system. E. coli-based cell extracts are a vital component of inexpensive and high-yielding CFPS reactions. However, effective preparation of E. coli cell extract is limited to high-pressure homogenizers (French press style or impinge-style) or bead mill homogenizers, which all require a significant capital investment. This work specifically assessed the following capital cost lysis techniques: (1) sonication, (2) bead vortex mixing, (3) freeze-thaw cycling, and (4) lysozyme incubation to prepare E. coli cell extract for CFPS. In this work, simple shake flask fermentation with a commercially available E. coli strain was used. Additionally, the RNA polymerase was over expressed in the E. coli cells prior to lysis which eliminated the need to add independently purified RNA polymerase to the CFPS reaction. As a result, high yielding E. coli-based cell extract was prepared using equipment requiring reduced capital investment and common to biotechnology laboratories. To our knowledge, this is the first successful prokaryote-based CFPS reaction to be carried out with extract prepared by sonication or bead vortex mixing. LETs are an attractive alternative to plasmids for site-specific incorporation of unnatural amino acids in proteins in the CFPS system because of their short preparation time and ease of production. However, major limitations associated with LETs are: (1) their degradation by RecBCD enzyme present in the cell-extract used for CFPS and (2) high CFPS energy costs. In this work, we report the optimization of LET-based CFPS for improved protein yield by inhibiting the RecBCD enzyme with small inhibitor molecules resulting in three fold increment in yield of protein containing UAA. We also assessed alternative energy sources such as glucose, fructose-1,6-bisphospate, creatine phosphate/creatine kinase, and high glutamate salt for cost reduction. This work could be important for high-throughput applications based on linear expression templates. This work demonstrates simple E. coli extract preparation and improved yield with linear expression templates for further advancements of cell-free protein synthesis system.

Page generated in 0.0195 seconds