• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2063
  • 753
  • 278
  • 188
  • 100
  • 67
  • 67
  • 67
  • 67
  • 67
  • 67
  • 60
  • 47
  • 44
  • 33
  • Tagged with
  • 4266
  • 706
  • 608
  • 426
  • 418
  • 350
  • 323
  • 321
  • 280
  • 234
  • 232
  • 219
  • 215
  • 212
  • 212
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Functional roles of P2Y2 nucleotide receptor in the formation and maintenance of vertebrate neuromuscular junctions /

Tung, Kwok Kwan. January 2003 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references (leaves 127-140). Also available in electronic version. Access restricted to campus users.
42

The characterisation of α-adrenergic-like G protein-coupled receptors from amphioxus

Bayliss, Asha Louise January 2013 (has links)
No description available.
43

Characterization of the membrane associated progesterone receptor (MAPR) homologues in Saccharomyces cervisiae and Arabidopsis thaliana

Gray, Phillip Neal 08 1900 (has links)
No description available.
44

The Roles of Mineralocorticoid and GABAA Receptors in Anxiety and Fear Memory

McEown, Kristopher Scott Unknown Date
No description available.
45

Activation of Sigma-1 Receptors Increases Expression, Trafficking, and Surface Levels of NMDA Receptors

Pabba, Mohan 16 April 2014 (has links)
Sigma-1 receptors (σ-1Rs) are chaperone-like proteins that are broadly distributed throughout the central nervous system and in other tissues. They have been implicated in several physiological and pathological processes, primarily by their ability to modulate certain voltage- and ligand-gated ion channels. Growing evidence suggests that σ-1Rs regulate the functions of ion channels, such as voltage-gated K+ 1.2 (Kv 1.2) and the human Ether-à-go-go-Related Gene (hERG) ion channels, by modulating their expression, trafficking, and targeting. While it is well documented that σ-1Rs enhance the function of N-methyl-D-aspartate receptors (NMDARs), the mechanisms of this enhancement remain poorly understood. Using biochemical methods, we show that 90 minutes after intraperitoneal (i.p.) injection of σ-1R agonists such as (+)-SKF 10,047 (SKF) or (+)-Pentazocine (PTZ) (2 mg/kg), there is an increase in the expression of GluN2 subunits of NMDARs and postsynaptic density protein-95 (PSD-95) in the rat hippocampus. Following activation of σ-1Rs, co-immunoprecipitation (Co-IP) experiments reveal an increased interaction between σ-1Rs and NMDAR subunits; sucrose gradient centrifugation demonstrates an increase in the protein levels of GluN2 subunits in vesicular compartment; and biotinylation shows an increase in the surface levels of GluN2A-containing NMDARs. Taken together, our results suggest σ-1Rs may enhance NMDARs function by increasing their expression, trafficking, and surface levels. This σ-1R-mediated increase in NMDAR expression and surface levels might be involved in several physiological processes such as learning and memory. Our findings also suggest that σ-1Rs could form a potential target for designing novel antipsychotics.
46

Developmental regulation of muscarinic acetylcholine receptor expression in embryonic chick heart and retina /

McKinnon, Lise Anne, January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [110]-127).
47

The role of beta-arrestin in regulating the muscarinic acetylcholine type II receptor

Jones, Kymry Thereasa January 2007 (has links)
Thesis (Ph.D.)--Biology, Georgia Institute of Technology, 2008. / Committee Chair: Dr. Nael A. McCarty; Committee Co-Chair: Dr. Darrell Jackson; Committee Member: Dr. Alfred H. Merrill; Committee Member: Dr. Barbara D. Boyan; Committee Member: Dr. Harish Radhakrishna; Committee Member: Dr. Marion B. Sewer
48

Development of the presynaptic nerve terminal during neuromuscular synaptogenesis /

Lee, Chi Wai. January 2005 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references (leaves 136-146). Also available in electronic version.
49

Biochemical studies on muscarinic cholinergic receptors

Carson, Susan January 1982 (has links)
A novel solubilising agent (0.l% sodium cholate-lM NaCl) has been developed which will solubilise 10-30% of muscarinic cholinergic receptors from bovine caudate nucleus. Using the muscarinic antagonist quinuclidinyl benzilate (QNB), a single saturable binding component was found with an equilibrium constant of ZOOpM, approximately 10-fold higher than the membrane receptor and 4-fold higher than the ratio k<sub>-l</sub>/k<sub>l</sub> determined kinetically in the soluble material. This latter difference may indicate that the binding of QNB to the solubilised receptor is not a simple second-order process. Inhibition constants for a variety of muscarinic agonists and antagonists were 10 to 20-fold higher than in the membrane state and non-muscarinic ligands were without effect. The decrease in affinity was shown to be due to the presence of high salt. Evidence was presented that the apparent increase in Hill coefficient for muscarinic agonist binding to soluble material was not due to a differential solubilisation of muscarinic receptors or to a conformational change of high to low affinity agonist sites during the solubilisation. Instead the Hill coefficient of the soluble material decreased as the percentage of total binding sites solubilised increased. The stability of receptor binding at different temperatures was shown to be dependent on the protein: cholate (w/w) ratio. Results from gel filtration, affinity chromotography and immunization studies are also reported. The results of this thesis are discussed in the light of the possible importance of phospholipids for receptor activity.
50

Sigma-1 Receptor (σ – 1R) Activation and Modulation of NMDA Receptor Surface Expression

Hristova, Elitza January 2014 (has links)
The sigma-1 receptors (σ-1Rs) are endoplasmic reticulum (ER) resident proteins shown to have chaperone-like functions, and are widely distributed throughout the central nervous system (CNS). They reside at a specialized membrane called mitochondria- associated ER-membrane (MAM) and can modulate numerous voltage- and ligand-gated ion channels. One of these channels is the N-methyl-D-aspartate receptor (NMDAR), and σ-1R ligands are able to enhance the potentiation of NMDARs, but the mechanism involved remains poorly understood. Using various biochemical techniques, we show that 90 min following an i.p. injection of σ-1R agonists ((+)-SKF 10,047 (SKF), (+)- Pentazocine (PTZ), or PRE-084 (PRE), there is an increase in the expression of GluN2- containing NMDARs in the rat hippocampus. These results suggest that σ-1R activation is able to enhance NMDAR function by modulating protein expression levels both in the cytosol and on the cell surface. This suggests that σ-1Rs could be excellent therapeutic targets for many neurological disorders, and for the development of novel antipsychotics.

Page generated in 0.0349 seconds