Spelling suggestions: "subject:"recherche à voisinage variable."" "subject:"echerche à voisinage variable.""
1 |
Méthodes et outils pour une affectation optimale des juges lors des compétitions : une application au concours John MolsonLamghari, Amina January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
2 |
Méthodes et outils pour une affectation optimale des juges lors des compétitions : une application au concours John MolsonLamghari, Amina January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
3 |
Méthodes heuristiques pour un problème d'ordonnancement avec contraintes sur les ressourcesBouffard, Véronique January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
4 |
Recherche à voisinage variable pour des problèmes de routage avec ou sans gestion de stock / Variable neighborhood search for routing problems with or without inventory managementMjirda, Anis 19 September 2014 (has links)
Dans cette thèse nous nous intéressons à l'étude et à la résolution de problèmes d'optimisation dans le domaine du transport. La première problématique concerne le problème d'élaboration de tournées avec gestion des stocks, et nous considérons dans une seconde partie le problème du voyageur de commerce avec tirant d'eau. Nous avons développé des approches basées sur la recherche à voisinage variable pour résoudre ces problèmes NP-Difficiles, en proposant différentes structures de voisinages et schémas de résolution efficaces. L'évaluation globale des approches proposées sur des instances de la littérature montre leur efficacité. En particulier, nos algorithmes ont amélioré les résultats obtenus par les meilleures approches existantes pour ces deux problèmes. / This thesis deals with the study of optimization problems in the transportation domain. We first address the inventory routing problem and we consider the traveling salesman problem with draft limits in a second part. In both cases we have developed methods based on the variable neighborhood search to solve these NP-hard problems. We have proposed several efficient neighborhood structures and solving frameworks. The global evaluation of the proposed approach on sets of benchmarks available in the litterature shows a remarkable efficency and effectiveness. In particular, our algorithms have improved the results obtained by the current best approaches for these two problems.
|
5 |
Méthodes de modélisation et d'optimisation par recherche à voisinages variables pour le problème de collecte et de livraison avec transbordement / Modeling method and optimization by the variable neighborhood search for the pickup and delivery problem with transshipmentTchapnga Takoudjou, Rodrigue 12 June 2014 (has links)
La présente thèse se déroule dans le cadre du projet ANR PRODIGE et est axée sur la recherche de stratégies permettant l’optimisation du transport en général et du transport routier de marchandises en particulier. Le problème de transport support de cette étude est le problème de collecte et livraison avec transbordement. Ce problème généralise plusieurs problèmes de transports classiques. Le transbordement y est utilisé comme levier de flexibilité et d’optimisation. Pour analyser et résoudre ce problème, les analyses sont effectuées suivant trois axes : le premier axe concerne l’élaboration d’un modèle analytique plus précisément d’un modèle mathématique en variables mixtes. Ce modèle permet de fournir dessolutions optimales au décisionnaire du transport mais présente l’inconvénient de nécessiter un temps de résolution qui croit exponentiellement avec la taille du problème. Cette limitation est levée par le deuxième axe d’étude qui permet de résoudre le problème de transport étudié par une méthode d’optimisation approchée tout en garantissant des solutions satisfaisantes.La méthode utilisée est une métaheuristique inspirée de la recherche à voisinages variables (VNS). Dans le troisième axe, l’ensemble des résultats obtenus dans la thèse sont testés en situation de transports réels via le projet PRODIGE. / The thesis is conducted under the ANR project PRODIGE and it is focused on seeking strategies allowing the optimization of transport in general and road freight transport in particular. The transportation problem support for this study is the pickup and delivery problem with transshipment.This problem generalizes several classical transportation problems.Transshipment is used as optimization and flexibility leverage. To study and solve this problem, analyzes are performed along three axes :the first objective concerns the development of an analytical model, more accurately a mathematical model with mixed variables. This model allows providing optimal solution to the decision maker, but has the disadvantage of requiring a time resolution that grows exponentially with the size of the problem. This limitation is overcome by the second line of the study that solves the transportation problem studied by an approximate optimization method while ensuring satisfactory solutions. The method used is a mataheuristic broadly followed the variables neighborhoods research principles. In the third objective, the overall results obtained in the thesis are tested in real transport situation via the PRODIGE project.
|
6 |
Models and algorithms for the combinatorial optimization of WLAN-based indoor positioning system / Modèles et algorithmes pour l'optimisation combinatoire de systèmes de localisation indoor basés sur les WLANZheng, You 20 April 2012 (has links)
La localisation des personnes et des objets à l’intérieur des bâtiments basée sur les réseaux WLAN connaît un intérêt croissant depuis quelques années ; ce système peut être un parfait complément pour fournir des informations de localisation statique ou dynamique dans des environnements où les techniques de positionnement telles que GPS ne sont pas efficaces. Le manuscrit de thèse propose une nouvelle approche pour définir un système WLAN de positionnement indoor (WLAN-IPS) comme un problème d'optimisation combinatoire afin de garantir à la fois une qualité de communication et une minimisation de l'erreur de positionnement via le réseau. Cette approche est caractérisée par plusieurs questions difficiles que nous abordons en trois étapes.Dans un premier temps, nous avons conçu un réseau WLAN-IPS et mis en œuvre une plateforme de test. Nous avons examiné la performance du système sous diverses contraintes expérimentales et nous nous sommes penchés sur l'analyse des relations entre l'erreur de positionnement et les facteurs environnementaux externes. Ces relations ont permis de proposer des indicateurs pour évaluer l'erreur de positionnement. Ensuite nous avons proposé un modèle physique qui définit tous les paramètres majeurs rencontrés en WLAN-IPS à partir de la littérature. L'objectif initial des infrastructures WLAN étant de fournir un accès radio de qualité au réseau, nous avons introduit un objectif supplémentaire qui est de minimiser l'erreur de localisation dans le contexte IPS. Deux indicateurs principaux ont été définis afin d'évaluer la qualité de service (QoS) et l'erreur de localisation pour LBS (Location-Based Services). Enfin après avoir défini la formulation mathématique du problème d'optimisation et les indicateurs clés de performance, nous avons proposé un algorithme mono-objectif et un algorithme multicritère basés sur Tabu Search et Variable Neighborhood Search pour fournir des bonnes solutions en temps raisonnable. Les simulations montrent que ces deux algorithmes sont très efficaces pour le problème d'optimisation que nous avons posé. / Indoor Positioning Systems (IPS) using the existing WLAN have won growing interest in the last years, it can be a perfect supplement to provide location information of users in indoor environments where other positioning techniques such as GPS, are not much effective. The thesis manuscript proposes a new approach to define a WLAN-based indoor positioning system (WLAN-IPS) as a combinatorial optimization problem to guarantee the requested communication quality while optimizing the positioning error. This approach is characterised by several difficult issues we tackled in three steps.At first, we designed a WLAN-IPS and implemented it as a test framework. Using this framework, we looked at the system performance under various experimental constraints. Through these experiments, we went as far as possible in analysing the relationships between the positioning error and the external environmental factors. These relationships were considered as evaluation indicators of the positioning error. Secondly, we proposed a model that defines all major parameters met in the WLAN-IPS from the literature. As the original purpose of the WLAN infrastructures is to provide radio communication access, we introduced an additional purpose which is to minimize the location error within IPS context. Two main indicators were defined in order to evaluate the network Quality of Service (QoS) and the positioning error for Location-Based Service (LBS). Thirdly, after defining the mathematical formulation of the optimisation problem and the key performance indicators, we proposed a mono-objective algorithm and a multi-objective algorithm which are based on Tabu Search metaheuristic to provide good solutions within a reasonable amount of time. The simulations demonstrate that these two algorithms are highly efficient for the indoor positioning optimization problem.
|
7 |
Flexible Radio Resource Management for Multicast Multimedia Service Provision : Modeling and Optimization / Allocation de ressources radio pour les services multimédias : modélisation et optimisationXu, Qing 29 August 2014 (has links)
Le conflit entre la demande de services multimédia en multidiffusion à haut débit (MBMS) et les limites en ressources radio demandent une gestion efficace de l'allocation des ressources radio (RRM) dans les réseaux 3G UMTS. À l'opposé des travaux existant dans ce domaine, cette thèse se propose de résoudre le problème de RRM dans les MBMS par une approche d’optimisation combinatoire. Le travail commence par une modélisation formelle du problème cible, désigné comme Flexible Radio Resource Management Model (F2R2M). Une analyse de la complexité et du paysage de recherche est effectuée à partir de ce modèle. Tout d’abord on montre qu'en assouplissant les contraintes de code OVSF, le problème de RRM pour les MBMS peut s'apparenter à un problème de sac à dos à choix multiples (MCKP). Une telle constatation permet de calculer les limites théoriques de la solution en résolvant le MCKP similaire. En outre, l'analyse du paysage montre que les espaces de recherche sont accidentés et constellés d'optima locaux. Sur la base de cette analyse, des algorithmes métaheuristiques sont étudiés pour résoudre le problème. Nous montrons tout d'abord que un Greedy Local Search (GLS) et un recuit simulé (SA) peuvent trouver de meilleures solutions que les approches existantes implémentées dans le système UMTS, mais la multiplicité des optima locaux rend les algorithmes très instables. Un algorithme de recherche tabou (TS) incluant une recherche à voisinage variable (VNS) est aussi développé et comparé aux autres algorithmes (GLS et SA) et aux approches actuelles du système UMTS ; les résultats de la recherche tabou dépassent toutes les autres approches. Enfin les meilleures solutions trouvées par TS sont également comparées avec les solutions théoriques générées par le solveur MCKP. On constate que les meilleures solutions trouvées par TS sont égales ou très proches des solutions optimales théoriques. / The high throughputs supported by the multimedia multicast services (MBMS) and the limited radio resources result in strong requirement for efficient radio resource management (RRM) in UMTS 3G networks. This PhD thesis proposes to solve the MBMS RRM problem as a combinatorial optimization problem. The work starts with a formal modeling of the problem, named as the Flexible Radio Resource Management Model (F2R2M). An in-depth analysis of the problem complexity and the search landscape is done from the model. It is showed that, by relaxing the OVSF code constraints, the MBMS RRM problem can be approximated as a Multiple-Choice Knapsack Problem (MCKP). Such work allows us to compute the theoretical solution bounds by solving the approximated MCKP. Then the fitness landscape analysis shows that the search spaces are rough and reveal several local optimums. Based on the analysis, some metaheuristic algorithms are studied to solve the MBMS RRM problem. We first show that a Greedy Local Search (GLS) and a Simulated Annealing (SA) allow us to find better solutions than the existing approaches implemented in the UMTS system, however the results are instable due to the landscape roughness. Finally we have developed a Tabu Search (TS) mixed with a Variable Neighborhood Search (VNS) algorithm and we have compared it with GLS, SA and UMTS embedded algorithms. Not only the TS outperforms all the other approaches on several scenarios but also, by comparing it with the theoretical solution bounds generated by the MCKP solver, we observe that TS is equal or close to the theoretical optimal solutions.
|
8 |
Variants of Deterministic and Stochastic Nonlinear Optimization Problems / Variantes de problèmes d'optimisation non linéaire déterministes et stochastiquesWang, Chen 31 October 2014 (has links)
Les problèmes d’optimisation combinatoire sont généralement réputés NP-difficiles, donc il n’y a pas d’algorithmes efficaces pour les résoudre. Afin de trouver des solutions optimales locales ou réalisables, on utilise souvent des heuristiques ou des algorithmes approchés. Les dernières décennies ont vu naitre des méthodes approchées connues sous le nom de métaheuristiques, et qui permettent de trouver une solution approchées. Cette thèse propose de résoudre des problèmes d’optimisation déterministe et stochastique à l’aide de métaheuristiques. Nous avons particulièrement étudié la méthode de voisinage variable connue sous le nom de VNS. Nous avons choisi cet algorithme pour résoudre nos problèmes d’optimisation dans la mesure où VNS permet de trouver des solutions de bonne qualité dans un temps CPU raisonnable. Le premier problème que nous avons étudié dans le cadre de cette thèse est le problème déterministe de largeur de bande de matrices creuses. Il s’agit d’un problème combinatoire difficile, notre VNS a permis de trouver des solutions comparables à celles de la littérature en termes de qualité des résultats mais avec temps de calcul plus compétitif. Nous nous sommes intéressés dans un deuxième temps aux problèmes de réseaux mobiles appelés OFDMA-TDMA. Nous avons étudié le problème d’affectation de ressources dans ce type de réseaux, nous avons proposé deux modèles : Le premier modèle est un modèle déterministe qui permet de maximiser la bande passante du canal pour un réseau OFDMA à débit monodirectionnel appelé Uplink sous contraintes d’énergie utilisée par les utilisateurs et des contraintes d’affectation de porteuses. Pour ce problème, VNS donne de très bons résultats et des bornes de bonne qualité. Le deuxième modèle est un problème stochastique de réseaux OFDMA d’affectation de ressources multi-cellules. Pour résoudre ce problème, on utilise le problème déterministe équivalent auquel on applique la méthode VNS qui dans ce cas permet de trouver des solutions avec un saut de dualité très faible. Les problèmes d’allocation de ressources aussi bien dans les réseaux OFDMA ou dans d’autres domaines peuvent aussi être modélisés sous forme de problèmes d’optimisation bi-niveaux appelés aussi problèmes d’optimisation hiérarchique. Le dernier problème étudié dans le cadre de cette thèse porte sur les problèmes bi-niveaux stochastiques. Pour résoudre le problème lié à l’incertitude dans ce problème, nous avons utilisé l’optimisation robuste plus précisément l’approche appelée « distributionnellement robuste ». Cette approche donne de très bons résultats légèrement conservateurs notamment lorsque le nombre de variables du leader est très supérieur à celui du suiveur. Nos expérimentations ont confirmé l’efficacité de nos méthodes pour l’ensemble des problèmes étudiés. / Combinatorial optimization problems are generally NP-hard problems, so they can only rely on heuristic or approximation algorithms to find a local optimum or a feasible solution. During the last decades, more general solving techniques have been proposed, namely metaheuristics which can be applied to many types of combinatorial optimization problems. This PhD thesis proposed to solve the deterministic and stochastic optimization problems with metaheuristics. We studied especially Variable Neighborhood Search (VNS) and choose this algorithm to solve our optimization problems since it is able to find satisfying approximated optimal solutions within a reasonable computation time. Our thesis starts with a relatively simple deterministic combinatorial optimization problem: Bandwidth Minimization Problem. The proposed VNS procedure offers an advantage in terms of CPU time compared to the literature. Then, we focus on resource allocation problems in OFDMA systems, and present two models. The first model aims at maximizing the total bandwidth channel capacity of an uplink OFDMA-TDMA network subject to user power and subcarrier assignment constraints while simultaneously scheduling users in time. For this problem, VNS gives tight bounds. The second model is stochastic resource allocation model for uplink wireless multi-cell OFDMA Networks. After transforming the original model into a deterministic one, the proposed VNS is applied on the deterministic model, and find near optimal solutions. Subsequently, several problems either in OFDMA systems or in many other topics in resource allocation can be modeled as hierarchy problems, e.g., bi-level optimization problems. Thus, we also study stochastic bi-level optimization problems, and use robust optimization framework to deal with uncertainty. The distributionally robust approach can obtain slight conservative solutions when the number of binary variables in the upper level is larger than the number of variables in the lower level. Our numerical results for all the problems studied in this thesis show the performance of our approaches.
|
9 |
Une heuristique de recherche à voisinage variable pour le problème du voyageur de commerce avec fenêtres de tempsAmghar, Khalid 04 1900 (has links)
Nous adaptons une heuristique de recherche à voisinage variable pour traiter le problème du voyageur de commerce avec fenêtres de temps (TSPTW) lorsque l'objectif est la minimisation du temps d'arrivée au dépôt de destination. Nous utilisons des méthodes efficientes pour la vérification de la réalisabilité et de la rentabilité d'un mouvement. Nous explorons les voisinages dans des ordres permettant de réduire l'espace de recherche. La méthode résultante est compétitive avec l'état de l'art. Nous améliorons les meilleures solutions connues pour deux classes d'instances et nous fournissons les résultats de plusieurs instances du TSPTW pour la première fois. / We adapt a general variable neighborhood search heuristic to solve the traveling salesman problem with time windows (TSPTW) where the objective is to minimize the completion time. We use efficient methods to check the feasibility and the profitability of a movement. We use a specific order to reduce the search space while exploring the neighborhoods. The resulting method is competitive with the state-of-the-art. We improve the best known solutions for two classes of instances and provide the results of multiple instances of TSPTW for the first time.
|
Page generated in 0.0952 seconds