Spelling suggestions: "subject:"recherche d’image"" "subject:"echerche d’image""
1 |
Recherche multi-descripteurs dans les fonds photographiques numérisés / Multi-descriptor retrieval in digitalized photographs collectionsBhowmik, Neelanjan 07 November 2017 (has links)
La recherche d’images par contenu (CBIR) est une discipline de l’informatique qui vise à structurer automatiquement les collections d’images selon des critères visuels. Les fonctionnalités proposées couvrent notamment l’accès efficace aux images dans une grande base de données d’images ou l’identification de leur contenu par des outils de détection et de reconnaissance d’objets. Ils ont un impact sur une large gamme de domaines qui manipulent ce genre de données, telles que le multimedia, la culture, la sécurité, la santé, la recherche scientifique, etc.Indexer une image à partir de son contenu visuel nécessite d’abord de produire un résumé visuel de ce contenu pour un usage donné, qui sera l’index de cette image dans la collection. En matière de descripteurs d’images, la littérature est désormais trés riche: plusieurs familles de descripteurs existent, et dans chaque famille de nombreuses approches cohabitent. Bon nombre de descripteurs ne décrivant pas la même information et n’ayant pas les mêmes propriétés d’invariance, il peut être pertinent de les combiner de manière à mieux décrire le contenu de l’image. Cette combinaison peut être mise en oeuvre de différentes manières, selon les descripteurs considérés et le but recherché. Dans cette thése, nous nous concentrons sur la famille des descripteurs locaux, avec pour application la recherche d’images ou d’objets par l’exemple dans une collection d’images. Leurs bonnes propriétés les rendent très populaires pour la recherche, la reconnaissance et la catégorisation d'objets et de scènes. Deux directions de recherche sont étudiées:Combinaison de caractéristiques pour la recherche d’images par l’exemple: Le coeur de la thèse repose sur la proposition d’un modèle pour combiner des descripteurs de bas niveau et génériques afin d’obtenir un descripteur plus riche et adapté à un cas d’utilisation donné tout en conservant la généricité afin d’indexer différents types de contenus visuels. L’application considérée étant la recherche par l’exemple, une autre difficulté majeure est la complexité de la proposition, qui doit correspondre à des temps de récupération réduits, même avec de grands ensembles de données. Pour atteindre ces objectifs, nous proposons une approche basée sur la fusion d'index inversés, ce qui permet de mieux représenter le contenu tout en étant associé à une méthode d’accès efficace.Complémentarité des descripteurs: Nous nous concentrons sur l’évaluation de la complémentarité des descripteurs locaux existant en proposant des critères statistiques d’analyse de leur répartition spatiale dans l'image. Ce travail permet de mettre en évidence une synergie entre certaines de ces techniques lorsqu’elles sont jugées suffisamment complémentaires. Les critères spatiaux sont exploités dans un modèle de prédiction à base de régression linéaire, qui a l'avantage de permettre la sélection de combinaisons de descripteurs optimale pour la base considérée mais surtout pour chaque image de cette base. L'approche est évaluée avec le moteur de recherche multi-index, où il montre sa pertinence et met aussi en lumière le fait que la combinaison optimale de descripteurs peut varier d'une image à l'autre.En outre, nous exploitons les deux propositions précédentes pour traiter le problème de la recherche d'images inter-domaines, correspondant notamment à des vues multi-source et multi-date. Deux applications sont explorées dans cette thèse. La recherche d’images inter-domaines est appliquée aux collections photographiques culturelles numérisées d’un musée, où elle démontre son efficacité pour l’exploration et la valorisation de ces contenus à différents niveaux, depuis leur archivage jusqu’à leur exposition ou ex situ. Ensuite, nous explorons l’application de la localisation basée image entre domaines, où la pose d’une image est estimée à partir d’images géoréférencées, en retrouvant des images géolocalisées visuellement similaires à la requête / Content-Based Image Retrieval (CBIR) is a discipline of Computer Science which aims at automatically structuring image collections according to some visual criteria. The offered functionalities include the efficient access to images in a large database of images, or the identification of their content through object detection and recognition tools. They impact a large range of fields which manipulate this kind of data, such as multimedia, culture, security, health, scientific research, etc.To index an image from its visual content first requires producing a visual summary of this content for a given use, which will be the index of this image in the database. From now on, the literature on image descriptors is very rich; several families of descriptors exist and in each family, a lot of approaches live together. Many descriptors do not describe the same information and do not have the same properties. Therefore it is relevant to combine some of them to better describe the image content. The combination can be implemented differently according to the involved descriptors and to the application. In this thesis, we focus on the family of local descriptors, with application to image and object retrieval by example in a collection of images. Their nice properties make them very popular for retrieval, recognition and categorization of objects and scenes. Two directions of research are investigated:Feature combination applied to query-by-example image retrieval: the core of the thesis rests on the proposal of a model for combining low-level and generic descriptors in order to obtain a descriptor richer and adapted to a given use case while maintaining genericity in order to be able to index different types of visual contents. The considered application being query-by-example, another major difficulty is the complexity of the proposal, which has to meet with reduced retrieval times, even with large datasets. To meet these goals, we propose an approach based on the fusion of inverted indices, which allows to represent the content better while being associated with an efficient access method.Complementarity of the descriptors: We focus on the evaluation of the complementarity of existing local descriptors by proposing statistical criteria of analysis of their spatial distribution. This work allows highlighting a synergy between some of these techniques when judged sufficiently complementary. The spatial criteria are employed within a regression-based prediction model which has the advantage of selecting the suitable feature combinations globally for a dataset but most importantly for each image. The approach is evaluated within the fusion of inverted indices search engine, where it shows its relevance and also highlights that the optimal combination of features may vary from an image to another.Additionally, we exploit the previous two proposals to address the problem of cross-domain image retrieval, where the images are matched across different domains, including multi-source and multi-date contents. Two applications of cross-domain matching are explored. First, cross-domain image retrieval is applied to the digitized cultural photographic collections of a museum, where it demonstrates its effectiveness for the exploration and promotion of these contents at different levels from their archiving up to their exhibition in or ex-situ. Second, we explore the application of cross-domain image localization, where the pose of a landmark is estimated by retrieving visually similar geo-referenced images to the query images
|
2 |
Learning Image Classification and Retrieval Models / Apprentissage de modèles pour la classification et la recherche d'imagesMensink, Thomas 26 October 2012 (has links)
Nous assistons actuellement à une explosion de la quantité des données visuelles. Par exemple, plusieurs millions de photos sont partagées quotidiennement sur les réseaux sociaux. Les méthodes d'interprétation d'images vise à faciliter l'accès à ces données visuelles, d'une manière sémantiquement compréhensible. Dans ce manuscrit, nous définissons certains buts détaillés qui sont intéressants pour les taches d'interprétation d'images, telles que la classification ou la recherche d'images, que nous considérons dans les trois chapitres principaux. Tout d'abord, nous visons l'exploitation de la nature multimodale de nombreuses bases de données, pour lesquelles les documents sont composés d'images et de descriptions textuelles. Dans ce but, nous définissons des similarités entre le contenu visuel d'un document, et la description textuelle d'un autre document. Ces similarités sont calculées en deux étapes, tout d'abord nous trouvons les voisins visuellement similaires dans la base multimodale, puis nous utilisons les descriptions textuelles de ces voisins afin de définir une similarité avec la description textuelle de n'importe quel document. Ensuite, nous présentons une série de modèles structurés pour la classification d'images, qui encodent explicitement les interactions binaires entre les étiquettes (ou labels). Ces modèles sont plus expressifs que des prédicateurs d'étiquette indépendants, et aboutissent à des prédictions plus fiables, en particulier dans un scenario de prédiction interactive, où les utilisateurs fournissent les valeurs de certaines des étiquettes d'images. Un scenario interactif comme celui-ci offre un compromis intéressant entre la précision, et l'effort d'annotation manuelle requis. Nous explorons les modèles structurés pour la classification multi-étiquette d'images, pour la classification d'image basée sur les attributs, et pour l'optimisation de certaines mesures de rang spécifiques. Enfin, nous explorons les classifieurs par k plus proches voisins, et les classifieurs par plus proche moyenne, pour la classification d'images à grande échelle. Nous proposons des méthodes d'apprentissage de métrique efficaces pour améliorer les performances de classification, et appliquons ces méthodes à une base de plus d'un million d'images d'apprentissage, et d'un millier de classes. Comme les deux méthodes de classification permettent d'incorporer des classes non vues pendant l'apprentissage à un coût presque nul, nous avons également étudié leur performance pour la généralisation. Nous montrons que la classification par plus proche moyenne généralise à partir d'un millier de classes, sur dix mille classes à un coût négligeable, et les performances obtenus sont comparables à l'état de l'art. / We are currently experiencing an exceptional growth of visual data, for example, millions of photos are shared daily on social-networks. Image understanding methods aim to facilitate access to this visual data in a semantically meaningful manner. In this dissertation, we define several detailed goals which are of interest for the image understanding tasks of image classification and retrieval, which we address in three main chapters. First, we aim to exploit the multi-modal nature of many databases, wherein documents consists of images with a form of textual description. In order to do so we define similarities between the visual content of one document and the textual description of another document. These similarities are computed in two steps, first we find the visually similar neighbors in the multi-modal database, and then use the textual descriptions of these neighbors to define a similarity to the textual description of any document. Second, we introduce a series of structured image classification models, which explicitly encode pairwise label interactions. These models are more expressive than independent label predictors, and lead to more accurate predictions. Especially in an interactive prediction scenario where a user provides the value of some of the image labels. Such an interactive scenario offers an interesting trade-off between accuracy and manual labeling effort. We explore structured models for multi-label image classification, for attribute-based image classification, and for optimizing for specific ranking measures. Finally, we explore k-nearest neighbors and nearest-class mean classifiers for large-scale image classification. We propose efficient metric learning methods to improve classification performance, and use these methods to learn on a data set of more than one million training images from one thousand classes. Since both classification methods allow for the incorporation of classes not seen during training at near-zero cost, we study their generalization performances. We show that the nearest-class mean classification method can generalize from one thousand to ten thousand classes at negligible cost, and still perform competitively with the state-of-the-art.
|
3 |
New methods for image classification, image retrieval and semantic correspondence / Nouvelles méthodes pour classification d'image, recherche d'image et correspondence sémantiqueSampaio de Rezende, Rafael 19 December 2017 (has links)
Le problème de représentation d’image est au cœur du domaine de vision. Le choix de représentation d’une image change en fonction de la tâche que nous voulons étudier. Un problème de recherche d’image dans des grandes bases de données exige une représentation globale compressée, alors qu’un problème de segmentation sémantique nécessite une carte de partitionnement de ses pixels. Les techniques d’apprentissage statistique sont l’outil principal pour la construction de ces représentations. Dans ce manuscrit, nous abordons l’apprentissage des représentations visuels dans trois problèmes différents : la recherche d’image, la correspondance sémantique et classification d’image. Premièrement, nous étudions la représentation vectorielle de Fisher et sa dépendance sur le modèle de mélange Gaussien employé. Nous introduisons l’utilisation de plusieurs modèles de mélange Gaussien pour différents types d’arrière-plans, e.g., différentes catégories de scènes, et analyser la performance de ces représentations pour objet classification et l’impact de la catégorie de scène en tant que variable latente. Notre seconde approche propose une extension de la représentation l’exemple SVM pipeline. Nous montrons d’abord que, en remplaçant la fonction de perte de la SVM par la perte carrée, on obtient des résultats similaires à une fraction de le coût de calcul. Nous appelons ce modèle la « square-loss exemplar machine », ou SLEM en anglais. Nous introduisons une variante de SLEM à noyaux qui bénéficie des même avantages computationnelles mais affiche des performances améliorées. Nous présentons des expériences qui établissent la performance et l’efficacité de nos méthodes en utilisant une grande variété de représentations de base et de jeux de données de recherche d’images. Enfin, nous proposons un réseau neuronal profond pour le problème de l’établissement sémantique correspondance. Nous utilisons des boîtes d’objets en tant qu’éléments de correspondance pour construire une architecture qui apprend simultanément l’apparence et la cohérence géométrique. Nous proposons de nouveaux scores géométriques de cohérence adaptés à l’architecture du réseau de neurones. Notre modèle est entrainé sur des paires d’images obtenues à partir des points-clés d’un jeu de données de référence et évaluées sur plusieurs ensembles de données, surpassant les architectures d’apprentissage en profondeur récentes et méthodes antérieures basées sur des caractéristiques artisanales. Nous terminons la thèse en soulignant nos contributions et en suggérant d’éventuelles directions de recherche futures. / The problem of image representation is at the heart of computer vision. The choice of feature extracted of an image changes according to the task we want to study. Large image retrieval databases demand a compressed global vector representing each image, whereas a semantic segmentation problem requires a clustering map of its pixels. The techniques of machine learning are the main tool used for the construction of these representations. In this manuscript, we address the learning of visual features for three distinct problems: Image retrieval, semantic correspondence and image classification. First, we study the dependency of a Fisher vector representation on the Gaussian mixture model used as its codewords. We introduce the use of multiple Gaussian mixture models for different backgrounds, e.g. different scene categories, and analyze the performance of these representations for object classification and the impact of scene category as a latent variable. Our second approach proposes an extension to the exemplar SVM feature encoding pipeline. We first show that, by replacing the hinge loss by the square loss in the ESVM cost function, similar results in image retrieval can be obtained at a fraction of the computational cost. We call this model square-loss exemplar machine, or SLEM. Secondly, we introduce a kernelized SLEM variant which benefits from the same computational advantages but displays improved performance. We present experiments that establish the performance and efficiency of our methods using a large array of base feature representations and standard image retrieval datasets. Finally, we propose a deep neural network for the problem of establishing semantic correspondence. We employ object proposal boxes as elements for matching and construct an architecture that simultaneously learns the appearance representation and geometric consistency. We propose new geometrical consistency scores tailored to the neural network’s architecture. Our model is trained on image pairs obtained from keypoints of a benchmark dataset and evaluated on several standard datasets, outperforming both recent deep learning architectures and previous methods based on hand-crafted features. We conclude the thesis by highlighting our contributions and suggesting possible future research directions.
|
4 |
Image Retrieval in Digital Libraries: A Large Scale Multicollection Experimentation of Machine Learning techniquesMoreux, Jean-Philippe, Chiron, Guillaume 16 October 2017 (has links)
While historically digital heritage libraries were first powered in image mode, they quickly took advantage of OCR technology to index printed collections and consequently improve the scope and performance of the information retrieval services offered to users. But the access to iconographic resources has not progressed in the same way, and the latter remain in the shadows: manual incomplete and heterogeneous indexation, data silos by iconographic genre. Today, however, it would be possible to make better use of these resources, especially by exploiting the enormous volumes of OCR produced during the last two decades, and thus valorize these engravings, drawings, photographs, maps, etc. for their own value but also as an attractive entry point into the collections, supporting discovery and serenpidity from document to document and collection to collection. This article presents an ETL (extract-transform-load) approach to this need, that aims to: Identify and extract iconography wherever it may be found, in image collections but also in printed materials (dailies, magazines, monographies); Transform, harmonize and enrich the image descriptive metadata (in particular with machine learning classification tools); Load it all into a web app dedicated to image retrieval. The approach is pragmatically dual, since it involves leveraging existing digital resources and (virtually) on-the-shelf technologies. / Si historiquement, les bibliothèques numériques patrimoniales furent d’abord alimentées par des images, elles profitèrent rapidement de la technologie OCR pour indexer les collections imprimées afin d’améliorer périmètre et performance du service de recherche d’information offert aux utilisateurs. Mais l’accès aux ressources iconographiques n’a pas connu les mêmes progrès et ces dernières demeurent dans l’ombre : indexation manuelle lacunaire, hétérogène et non viable à grande échelle ; silos documentaires par genre iconographique ; recherche par le contenu (CBIR, content-based image retrieval) encore peu opérationnelle sur les collections patrimoniales. Aujourd’hui, il serait pourtant possible de mieux valoriser ces ressources, en particulier en exploitant les énormes volumes d’OCR produits durant les deux dernières décennies (tant comme descripteur textuel que pour l’identification automatique des illustrations imprimées). Et ainsi mettre en valeur ces gravures, dessins, photographies, cartes, etc. pour leur valeur propre mais aussi comme point d’entrée dans les collections, en favorisant découverte et rebond de document en document, de collection à collection. Cet article décrit une approche ETL (extract-transform-load) appliquée aux images d’une bibliothèque numérique à vocation encyclopédique : identifier et extraire l’iconographie partout où elle se trouve (dans les collections image mais aussi dans les imprimés : presse, revue, monographie) ; transformer, harmoniser et enrichir ses métadonnées descriptives grâce à des techniques d’apprentissage machine – machine learning – pour la classification et l’indexation automatiques ; charger ces données dans une application web dédiée à la recherche iconographique (ou dans d’autres services de la bibliothèque). Approche qualifiée de pragmatique à double titre, puisqu’il s’agit de valoriser des ressources numériques existantes et de mettre à profit des technologies (quasiment) mâtures.
|
Page generated in 0.069 seconds