Spelling suggestions: "subject:"reconhecimento dde padrões"" "subject:"reconhecimento dee padrões""
191 |
Avaliação de um método baseado em máquinas de suporte vetorial de múltiplos núcleos e retificação de imagens para classificação de objetos em imagens onidirecionais. / Assessment of a method based on multiple kernel support vector machines and images unwrapping for the classification of objects in omnidirectional images.Fábio Rodrigo Amaral 18 October 2010 (has links)
Apesar da popularidade das câmeras onidirecionais aplicadas à robótica móvel e da importância do reconhecimento de objetos no universo mais amplo da robótica e da visão computacional, é difícil encontrar trabalhos que relacionem ambos na literatura especializada. Este trabalho visa avaliar um método para classificação de objetos em imagens onidirecionais, analisando sua eficácia e eficiência para ser aplicado em tarefas de auto-localização e mapeamento de ambientes feitas por robôs moveis. Tal método é construído a partir de um classificador de objetos, implementado através de máquinas de suporte vetorial, estendidas para a utilização de Aprendizagem de Múltiplos Núcleos. Também na construção deste método, uma etapa de retificação é aplicada às imagens onidirecionais, de modo a aproximá-las das imagens convencionais, às quais o classificador utilizado já demonstrou bons resultados. A abordagem de Múltiplos Núcleos se faz necessária para possibilitar a aplicação de três tipos distintos de detectores de características em imagens, ponderando, para cada classe, a importância de cada uma das características em sua descrição. Resultados experimentais atestam a viabilidade de tal proposta. / Despite the popularity of omnidirectional cameras used in mobile robotics, and the importance of object recognition in the broader universe of robotics and computer vision, it is difficult to find works that relate both in the literature. This work aims at performing the evaluation of a method for object classification in omnidirectional images, evaluating its effectiveness and efficience considering its application to tasks of self-localization and environment mapping made by mobile robots. The method is based on a multiple kernel learning extended support vector machine object classifier. Furthermore, an unwrapping step is applied to omnidirectional images, to make them similar to perspective images, to which the classifier used has already shown good results. The Multiple Kernels approach is necessary to allow the use of three distinct types of feature detectors in omnidirectional images by considering, for each class, the importance of each feature in the description. Experimental results demonstrate the feasibility of such a proposal.
|
192 |
Sistema automatizado de classificação de abelhas baseado em reconhecimento de padrões. / Automated bee classification system based on pattern recognition.Jésus Franco Bueno 08 October 2010 (has links)
A crescente perda mundial de biodiversidade tem sido uma das preocupações da comunidade científica internacional que motivaram a criação em 1992 da Convenção sobre a Diversidade Biológica, tornando-se um tratado de compromisso aceito pelos governantes de 187 países e pela Comunidade Européia. A redução da biodiversidade, devido a vários fatores, como a ação antrópica e o aquecimento global, compromete a capacidade do planeta de sustentação da vida humana em face do esgotamento dos recursos e serviços por ela prestados. A conservação e uso sustentável da biodiversidade passa necessariamente pela aquilatação e conhecimento das espécies. Entre essas espécies as abelhas polinizadoras têm merecido especial atenção, pois a polinização das plantas é um serviço de ecossistema muito importante. Cerca de três quartos das mais de 240 mil espécies de plantas do mundo dependem de polinizadores e estima-se que as abelhas sejam responsáveis por mais de 70% do serviço global de polinização. Existem quase 20.000 espécies de abelhas descritas no mundo. No Brasil são conhecidas quase 400 espécies de abelhas (cerca de 300 são abelhas sem ferrão) e o número estimado é de mais de 3.000 espécies. No entanto, este enorme esforço taxonômico a ser realizado pode estar comprometido pelo impedimento taxonômico reconhecido na Declaração de Darwin de 1988 pela ONU. Uma contribuição para minimizar o impedimento taxonômico pode ser dada pelo desenvolvimento de sistemas automatizados de apoio à decisão de identificação. Os sistemas de identificação existentes são proprietários, ou foram desenvolvidos para grupo específicos de espécies e muitas vezes não são integrados. Este trabalho com foco na identificação de abelhas, notadamente nas abelhas sem ferrão, que apresentam redução da venação das asas, apresenta um modelo de sistema baseado em computador para automatizar o processo de identificação de abelhas com uma abordagem de reconhecimento de padrões. Um modelo de sistema denominado ABeeS (Automated Bee Identification System) incorpora o conhecimento especializado para o reconhecimento automatizado de abelhas usando a imagem das asas. O modeloproposto apresenta as funcionalidades de um sistema de identificação de abelhas com o modelo de Caso de Uso e o fluxo de dados entre as atividades do processo de identificação com o modelo do Fluxo de Dados. Um modelo de banco de dados denominado Banco Entomológico de Espécies de Abelhas (BEE) foi proposto para armazenamento de resultados, treinamento e otimização do sistema ABeeS. Para levantar requisitos e avaliar a proposta foram desenvolvidos protótipos de partes do modelo no Labview, um ambiente de programação gráfica, que disponibiliza uma plataforma de visão computacional para aplicações de reconhecimento de padrões usando o método de correspondência de padrões (pattern matching). Um protótipo envolveu uma ferramenta para a definição dos marcos anatômicos nas imagens-padrão. Outro envolveu os resultados da extração automática dos marcos anatômicos e evidenciou que mostram que a capacidade do ABeeS em localizar automaticamente os gabaritos (template) dos marcos anatômicos na imagem da asa em análise depende do conhecimento especializado transferido para o sistema. Este conhecimento contribui para a seleção de uma região do entorno do marco anatômico para formação da imagem-gabarito. A definição precisa da área é muito importante para a acurácia do reconhecimento automatizado do marco anatômico. O ajuste dos parâmetros de treinamento e a qualidade da imagem da asa de abelha são determinantes para extração das características corretas. Parte integrante do modelo são algoritmos de classificação supervisionados, como o FNN4Bees desenvolvido no Laboratório de Automação Agrícola da POLI-USP, e que apresentou resultados satisfatórios. Este trabalho contribui com uma sistematização do processo de identificação de abelhas, servindo de guia para usuários dessa técnica, e o modelo obtido poderá ser utilizado para a implementação de um sistema real, na continuidade dos trabalhos. / The growing worldwide loss of biodiversity has been a concern to the international scientific community that motivated the creation of the Convention on Biological Diversity in 1992, which turned into a commitment treaty accepted by governments of 187 countries and the European Community. The reduction of biodiversity due to several factors, such as anthropic action and global warming, compromises the ability of the planet to sustain human life in face of the exhaustion of the resources and services it provides. Conservation and the sustainable use of biodiversity necessarily involve species knowledge and assessment. Among these species, pollinating bees have deserved special attention because plant pollination is an important ecosystem service. Nearly three quarters of more than 240,000 plant species depend on pollinators around the world and bees are estimated to account for more than 70% of the overall pollination service. There are nearly 20,000 bee species described in the world. Brazil is known to have nearly 400 bee species (about 300 are stingless bees) and the estimated number is over 3,000 species. However, this huge taxonomic effort to be performed may be compromised by the taxonomic impediment recognized by the UN in the Darwin Declaration in 1988. A contribution to minimize the taxonomic impediment may be given by the development of automated systems to support classification decision. Existing identification systems are proprietary, or were developed for specific groups of species and are often non-integrated. This study focused on bee classification, especially stingless bees that have reduced wing venation; a model for a computer-based system to automate the bee identification process using a pattern recognition approach is presented. A model of the system called ABeeS (Automated Bee Identification System) incorporates the expertise for the automated recognition of bees using wing images. The model presents the functionalities of the bee identification system with the Use Case model and data flow between the activities of the identification process with the Data Flow model. A database model called Bee Entomological Database (BEE) has been proposed for storage of results, training and for ABeeS system optimization. For requirements elicitation and evaluation, the proposal prototypes of parts of the model were developed in Labview, a graphical programming environment that provides a platform for computer vision applications of pattern recognition using the pattern matching method. One prototype uses a tool for defining the landmarks in the template-images. Another uses the results of the automatic extraction of landmarks that show the ability of ABeeS to automatically locate the templates of landmarks in the wing image under analysis, which depends on the expertise transferred to the system. This knowledge contributes to the selection of a region surrounding the anatomical landmark for the formation of the template. The precise definition of the area is very important for the accuracy of automated recognition of anatomical landmark. The adjustment of training parameters and image quality of the bee wing are crucial for extracting the right features. Part of the model is supervised classification algorithms, such as FNN4Bees developed in the Agricultural Automation Laboratory of POLI-USP, and presents satisfactory results. This work contributes to the systematization of the bee identification process, serving as a guide for users of this technique, and the model obtained can be used to implement a real system, in further work.
|
193 |
Um modelo para reconhecimento de padrões em imagens de satélites climáticos com base em linguagens formais. / A model for pattern recognition in climate satelites images based on formal languages.Luís Emílio Cavechiolli Dalla Valle 23 July 2012 (has links)
Uma sequência de imagens de satélite climático é processada aplicando-se um conjunto de operações de filtros, no intuito de extrair padrões de comportamento das nuvens. Caracteres são criados a partir deste tratamento e suas transições são investigadas, explorando a possibilidade de justificar suas ocorrências através de linguagens formais e linguagens bidimensionais, definindo suas gramáticas. Com esta contagem de transições, uma análise de sua forma fractal é iniciada e um paralelo com outras contagens estabelecida, como uma forma de estruturar um modelo computacionalmente menos complexo de prever o tempo, ou o comportamento de qualquer entidade dinâmica que possa ser discretizada. Com estas investigações e experiências, foi possível diminuir a quantidade de símbolos utilizados para justificar as formas das nuvens, bem como criar classes de equivalências para representar conjuntos de símbolos que compartilham as mesmas propriedades, diminuindo ainda mais a complexidade da gramática que se espera encontrar. / A sequence of weather satellite images are processed by applying a set of filtering operations in order to extract the behavior patterns of clouds. Characters are created from this treatment and their transitions are investigated by exploring the possibility of justifying their occurrence across formal languages and two-dimensional languages, defining their grammar. With these count transitions an analysis of their fractals starts and counts a parallel with others established as a way to structure a model less computationally complex to predict the weather, or the behavior of any dynamic entity that could be discretized. With these investigations and experiments, it was possible to reduce the number of symbols used to explain the shapes of clouds and create equivalent classes to represent the symbol sets that share the same properties, further reducing the complexity of the grammar expected to be found.
|
194 |
Pesquisa de similaridades em imagens mamográficas com base na extração de características. / Search for similarities in mammographic images based feature extraction.Jamilson Bispo dos Santos 25 April 2013 (has links)
Este trabalho apresenta uma estratégia computacional para a consolidação do treinamento dos radiologistas residentes por meio da classificação de imagens mamográficas pela similaridade, analisando informações dos laudos realizados por médicos experientes, obtendo os atributos extraídos das imagens médicas. Para a descoberta de padrões que caracterizam a similaridade aplicam-se técnicas de processamento digital de imagens e de mineração de dados nas imagens mamográficas. O reconhecimento de padrões tem como objetivo realizar a classificação de determinados conjuntos de imagens em classes. A classificação dos achados mamográficos é realizada utilizando Redes Neurais Artificiais, por meio do classificador Self-Organizing Map (SOM). O presente trabalho utiliza a recuperação de imagens por conteúdo (CBIR- Content-Based Image Retrieval), considerando a similaridade em relação a uma imagem previamente selecionada para o treinamento. As imagens são classificadas de acordo com a similaridade, analisando-se informações dos atributos extraídos das imagens e dos laudos. A identificação da similaridade é obtida pela extração de características, com a utilização da transformada de wavelets. / This work presents a computational strategy to consolidate the training of residents radiologists through the classification of mammographic images by similarity, analyzing information from reports made by experienced physicians, obtaining the attributes extracted from medical images. For the discovery of patterns that characterize the similarity apply techniques of digital image processing and data mining in mammographic images. Pattern recognition aims to achieve the classification of certain sets of images in classes. The classification of mammographic is performed using Artificial Neural Networks, through the classifier Self-Organizing Map (SOM). This work uses the image retrieval (CBIR-Content- Based Image Retrieval), considering the similarity in relation to an image already selected for training. The images are classified according to similarity, analyzing attribute information extracted from the images and reports. The identification of similarity was obtained by feature extraction, using the technique of wavelet transform.
|
195 |
Um sistema eficiente de detecção da ocorrência de eventos em sinais multimídia. / An efficient system for detecting events in multimidia signals.Celso de Oliveira 01 July 2008 (has links)
Nos últimos anos tem ocorrido uma necessidade crescente de métodos que possam lidar com conteúdo multimídia em larga escala, e com busca de tais informações de maneira eficiente e efetiva. Os objetos de interesse são representados por vetores descritivos (e. g. cor, textura, geometria, timbre) extraídos do conteúdo, associados a pontos de um espaço multidimensional. Um processo de busca visa, então, encontrar dados similares a uma dada amostra, tipicamente medindo distância entre pontos. Trata-se de um problema comum a uma ampla variedade de aplicações incluindo som, imagens, vídeo, bibliotecas digitais, imagens médicas, segurança, entre outras. Os maiores desafios dizem respeito às dificuldades inerentes aos espaços de alta dimensão, conhecidas por curse of dimensionality, que restringem significativamente a aplicação dos métodos comuns de busca. A literatura recente contém uma variedade de métodos de redução de dimensão que são altamente dependentes do tipo de dado considerado. Constata-se também certa carência de métodos gerais de análise que possam prever com precisão o desempenho dos algoritmos propostos. O presente trabalho contém uma análise geral dos princípios aplicáveis aos sistemas de busca em espaços de alta dimensão. Tal análise permite estabelecer de maneira precisa o compromisso existente entre robustez, refletida principalmente na imunidade a ruído, a taxa de erros de reconhecimento e a dimensão do espaço de observação. Além disto, mostra-se que é possível conceber um método geral de mapeamento, para fins de reconhecimento, que independe de especificidades do conteúdo. Para melhorar a eficiência de busca, um novo método de busca em espaços de alta dimensão é introduzido e analisado. Por fim, descreve-se sumariamente uma realização prática, desenvolvida segundo os princípios discutidos e que atende eficientemente aplicações comerciais de monitoramento de exibição de conteúdo em rádio e TV. / In the last few years there has been an increasing need for methods to deal with large scale multimedia content, and to search such information efficiently and effectively. The objects of interest are represented by feature vectors (e. g. color, texture, geometry, timbre) extracted from the content, associated to points in a multidimensional space. A search process aims, therefore, to find similar data to a given sample, typically measuring distance between points. It is a common problem to a wide range of applications that include sound, image, video, digital library, medical imagery, security, amongst others. The major challenges refer to the difficulties, inherent to the high dimension spaces, known as curse of dimensionality that limit significantly the application of the most common search methods. The recent literature contains a number of dimension reduction methods that are highly dependent on the type of data considered. Besides, there has been a certain lack of general analysis methods that can predict accurately the performance of the proposed algorithms. The present work contains a general analysis of the principles applicable to high dimension space search systems. Such analysis allows establishing in a precise manner the existing tradeoff amongst the system robustness, reflected mainly in the noise immunity, the error rate and the dimension of the observation space. Furthermore, it is shown that it is possible to conceive a mapping method, for recognition purpose, that can be independent of the content specificities. To improve the search efficiency, a new high dimension space search method is introduced and analyzed. Finally, a practical realization is briefly described, which has been developed in accordance with the principles discussed, and that addresses efficiently commercial applications relative to radio and TV content broadcasting monitoring.
|
196 |
Detecção de regiões de massas em mamografias usando índices de diversidade, geoestatísticas e geometria côncava / Detection of mass regions in mammograms using diversity indexes, geostatistics and concave geometryBRAZ JUNIOR, Geraldo 10 March 2014 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-08-17T17:18:53Z
No. of bitstreams: 1
GeraldoBraz.pdf: 4561857 bytes, checksum: de79b8d705a7a3132f4a83979788cf8b (MD5) / Made available in DSpace on 2017-08-17T17:18:53Z (GMT). No. of bitstreams: 1
GeraldoBraz.pdf: 4561857 bytes, checksum: de79b8d705a7a3132f4a83979788cf8b (MD5)
Previous issue date: 2014-03-10 / Breast cancer is configured as a global health problem that affects mainly the female population. It is known that early detection increases the chances of an effective treatment and improves the prognosis of the disease. With this goal, computacional tools have been proposed in order to assist the physician in the interpretation of mammography features providing detection and diagnosis of lesions. The challenge is to detect any lesios with high sensitivity rate while maintaining a small number of false positives. The main objective of this research is the development of an efficient methodology for mass detection in digitized mammograms. The detection task involves aspects of computer vision like find suspicious areas and describe them in a discriminatory way. This research evaluates the approaches of feature extraction using diversity analysis, geostatistics and concave geometry for the classification of previously identified suspicious regions using Support Vector Machine as a classifier techinique. The results are promising and reaches a high sensitivity rate jointly with a low mean rate of false positives per image when using concave geometry as features extraction approach. / O câncer de mama se configura como um problema de saúde mundial, que afeta principalmente a população feminina. É conhecido que a detecção precoce aumenta as chances de um tratamento efetivo, melhorando o prognóstico da doença. Com este objetivo, ferramentas computacionais têm sido propostas com a finalidade de auxiliar o especialista na interpretação do exame de mamografia, provendo funcionalidades de detecção e diagnóstico de lesões. Todavia, continua sendo um grande desafio detectar a lesão com alta taxa de sensibilidade, e garantir ao mesmo tempo que um número reduzido de falso positivos sejam gerados. Para tanto, metodologias que abordam extração de características textuais, probabilísticas ou baseada em modelo têm sido propostas para este fim. A pesquisa que remete este trabalho tem como objetivo principal a proposição de uma metodologia eficiente de detecção de regiões de massas em mamografias digitalizadas. A tarefa de detecção envolve aspectos de visão computacional relacionados a necessidade de encontrar regiões suspeitas e descrevê-las de maneira discriminatória. Esta pesquisa avalia a extração de características usando as abordagens de análise de diversidade, geoestatística e geométrica para a classificação das regiões suspeitas detectadas usando a Máquina de Vetores de Suporte como classificador. Os resultados encontrados são promissores ao obterem alta sensibilidade e baixa taxa média de falso positivos quando usando geometria côncava para extrair características.
|
197 |
Reconhecimento de padrões em sensores integrados. / Pattern recognition in integrated sensors.Quispe, Germán Carlos Santos 11 October 2005 (has links)
Neste trabalho foram estudados e aplicados vários métodos para reconhecimento de padrões e processamento de sinais, utilizando dados obtidos a partir de diferentes montagens experimentais de um Nariz Eletrônico, onde os sinais gerados por um conjunto de sensores condutivos em regime de temperatura variável, foram analisados com o objetivo de obter conjuntos de padrões que permitam identificar substâncias químicas. Adicionalmente foram discutidas estratégias de generalização da resposta dos sensores através da análise do tempo de resposta, sensibilidade e seletividade dos sensores. Foi discutida a utilização dos algoritmos de processamento de sinais e reconhecimento de padrões em forma conjunta com a finalidade de otimizar o processo de extração de informação e tomada de decisões a partir de um banco de dados. A utilização integrada do processamento de sinais e as técnicas de reconhecimento de padrões permitem definir e construir sistemas bem estruturados a partir dos quais pode ser extraída a informação desejada e conseqüente tomada de decisões, estas estruturas são conhecidas como DATAWAREHOUSE". A utilização de sistemas tipo DATAWAREHOUSE" permitirão a manipulação rápida da informação mesmo em bancos de dados de elevada e variada quantidade de dados. Foi proposta uma metodologia para a extração de informação a partir do sinal de ruído de um sensor de gás através da utilização de ajustes auto-regressivos conjuntamente com a aplicação do principio de máxima entropia. Com os resultados obtidos foi proposto um sistema de Nariz Eletrônico conformado apenas por um sensor de gás onde o processo de reconhecimento dos diferentes gases foi obtido através de um controlador Fuzzy. O Nariz Eletrônico proposto desta forma apresentou-se robusto e estável. / In this work, several methods for pattern recognition and signal processing were studied and applied, using data obtained from different experimental setup of the Electronic Nose. The signals were obtained from the array of conductive sensor into de Nose system, which worked under variable temperature condition. The signal analyses results were used to obtain patterns in order to identify different chemical substances. In addition it was discussed the possibility of the generalization of sensors response, in this sense the response time, sensibility and selectivity of each gas sensors were analyzed. It was discussed using together the signal processing algorithm and pattern recognition process in order to obtain an optimum process of the information extraction and make decision from the data bank. The integrated use of the signal process and pattern recognition promotes the definition and building of the well data banks structures known as DATAWAREHOUSE. These systems will promote the rapid and efficient data manipulation even with high and heterogeneous data banks. It was proposed an information extraction methodology from the noise signal of the gas sensor throughout auto regressive fitting process together with the Maximum Entropy Method. The Electronic Nose was proposed as consequence of the experimental results, the Nose system proposed contained only one gas sensor. The gas recognition process was made by Fuzzy controller system. This Electronic Nose showed a robust and stable behavior.
|
198 |
Detecção topológica de padrões xadrez para calibração de câmeras / Topological detection of chessboard patterns for camera calibrationLaureano, Gustavo Teodoro 23 August 2013 (has links)
A identificação de pontos em padrões de calibração é relatada como uma fase trabalhosa nos processos de calibração de câmeras. Essa etapa é sensível à presença de ruídos e geralmente requer a identificação de muitos pontos de controle. A detecção automática de padrões de calibração é fundamental para a automatização desse processo. Os trabalhos existentes são poucos e implementam soluções semi-automáticas ou, quando automáticas, não lidam com imagens distorcidas, com inclinações acentuadas ou exigem a detecção de todos os pontos apresentados pelo padrão de calibração. O presente trabalho vem contribuir com essa área propondo uma metodologia, denominada Chessboard Topological Detection (ChTD), completamente automática, aplicável a imagens com alta distorção, independente da detecção completa do padrão e que apresenta melhor aproveitamento dos pontos e do conjunto de imagens de calibração. A metodologia proposta é baseada em três etapas: a detecção estrutural dos pontos de interesse; triangulação e filtragem dos pontos encontrados com base em regras topológicas; e a propagação e ajuste de coordenadas via conectividade dos pontos vizinhos. A partir dessa metodologia foi implementada uma ferramenta que permite extrair pontos de calibração de um padrão xadrez de forma simples e completamente automática. Na avaliação do método ChTD foi realizada uma comparação com a função findChessBoardCorners da biblioteca OpenCV usando conjuntos de imagens reais e sintéticas. Os testes realizados com imagens reais possibilitaram comparações numéricas da quantidade de pontos e de padrões detectados, e os com imagens sintéticas permitiram avaliar o ChTD diante de inclinações do padrão e ruídos controlados. Pelos resultados obtidos foi possível verificar que o ChTD foi superior ao método do OpenCV, apresentando menor dependência à inclinação do padrão, melhor aproveitamento dos pontos e das imagens de calibração e realizando a detecção em imagens distorcidas. O ChTD é executado em um único passo, diferenciando-se do método do OpenCV que faz transformações sucessivas da imagem. A metodologia desenvolvida é modularizada, possibilitando o uso de outros algoritmos em suas fases intermediárias. / The detection of calibration points is reported as a time consuming task in camera calibration systems. This task is sensitive to noise and usually requires identification of a large set of control points. A methodology of automatic detection of calibration patterns is essential for the automation of this process. Existing works are few and usually implement semi-automatic solutions. Automatic methods do not deal with distorted images, and patterns with high tilt angles or require the detection of all the calibration points. The present work aims to contribute to this area proposing a methodology named Chessboard Topological Detection (ChTD), which is completely automatic, applicable to images with high distortion, making better use of all detected points, avoind calibration frames losses, regardless of the complete detection of the pattern features. The proposed methodology is based on three steps: the structural detection of points of interest, filtering and triangulation of the points based on topological rules and the adjust and coordinate propagation via connectivity of neighboring points inside the mesh. Based on this methodology, was implemented a tool that allows to extract calibration points of a chessboard pattern in a simple and automatic way. For the evaluation of the method ChTD, a comparison was made with the function findChessBoardCorners, which belongs to OpenCV library, using sets of synthetic and real images. Tests performed with real images allowed numerical comparisons of the number of points and detected patterns. The tests with synthetic images allowed to evaluate the ChTD facing the controlled tilt angle of the chessboard pattern and controlled image noise. The obtained results showed that the ChTD method was superior to OpenCV, with less dependence on the tilt angle of the calibration pattern, detecting more points, avoiding calibration images losses and detecting the pattern in distorted images. The ChTD runs in a single step, differing from OpenCV method that makes successive transformations of the image. The developed methodology is modular, enabling the use of different algorithms in its intermediates and some principal stages.
|
199 |
Reconhecimento de padrões heterogêneos e suas aplicações em biologia e nanotecnologia / Heterogeneous pattern recognition and its applications in biology and nanotechnologySilva, Núbia Rosa da 22 October 2015 (has links)
O reconhecimento de padrões de textura em imagens tem sido uma importante ferramenta na área de visão computacional. Isso porque o atributo textura pode revelar características intrínsecas, tornando possível a classificação de um conjunto de imagens semelhantes. Embora a textura seja estudada há mais de meio século, ainda não existe um consenso sobre sua definição e nem mesmo um método de extração de características de textura que seja eficiente para todos os tipos de imagens. Além disso, os métodos da literatura analisam os padrões de textura de maneira global, considerando que uma imagem apresente um conjunto de micropadrões que formam um único padrão global ou homogêneo de textura na imagem. No entanto, alguns tipos de imagens apresentam heterogeneidade em sua composição, ou seja, o conjunto de micropadrões na imagem é responsável por formar mais de um padrão de textura dentro da mesma imagem. Esse tipo de imagens levou ao propósito de investigação deste trabalho. Independentemente do método de extração de característica utilizado, considerar a heterogeneidade do padrão de textura em uma imagem leva a uma melhor representação de suas características. Para melhorar a análise de padrões heterogêneos de textura, três abordagens são propostas: (i) lazy-patch, (ii) combinação de modelos e (iii) modelagem da textura por meio de autômatos celulares inspirados em corrosão alveolar. Os resultados ao aplicar essas abordagens em diferentes conjuntos de imagens de biologia e nanotecnologia, mostraram que a análise de padrões heterogêneos resulta em melhor representatividade de imagens que possuem padrões heterogêneos de textura em sua composição. / Pattern recognition of texture in images has been playing an important role in computer vision area. This is because the texture attribute can reveal intrinsic characteristics, making it possible to classify a set of similar images. Although the texture is studied for over half a century, there is still no consensus on its definition or even a method to extrac texture characteristics that is effective for all types of images. Moreover, literature methods globally analyze the texture patterns, whereas a picture displays a number of micropatterns which form a single homogenous global pattern of texture in the image. However, some types of image display heterogeneity in their composition, that is, the set of micropatterns in the image use to form more than one texture pattern within the same image. Such type of image led to the purpose of this research work. Regardless the feature extraction method used, considering the heterogeneity of the texture pattern in an image leads to better representation of its features. To further improve the analysis of heterogeneous texture patterns, three approaches are proposed: (i) lazy-patch, (ii) combination of models and (iii) texture modeling using cellular automata inspired by pitting corrosion. The results of applying these approaches in different sets of biology and nanotechnology images showed that the analysis of heterogeneous patterns results in better representation of images that have heterogeneous patterns of texture in your composition.
|
200 |
Pesquisa de similaridades em imagens mamográficas com base na extração de características. / Search for similarities in mammographic images based feature extraction.Santos, Jamilson Bispo dos 25 April 2013 (has links)
Este trabalho apresenta uma estratégia computacional para a consolidação do treinamento dos radiologistas residentes por meio da classificação de imagens mamográficas pela similaridade, analisando informações dos laudos realizados por médicos experientes, obtendo os atributos extraídos das imagens médicas. Para a descoberta de padrões que caracterizam a similaridade aplicam-se técnicas de processamento digital de imagens e de mineração de dados nas imagens mamográficas. O reconhecimento de padrões tem como objetivo realizar a classificação de determinados conjuntos de imagens em classes. A classificação dos achados mamográficos é realizada utilizando Redes Neurais Artificiais, por meio do classificador Self-Organizing Map (SOM). O presente trabalho utiliza a recuperação de imagens por conteúdo (CBIR- Content-Based Image Retrieval), considerando a similaridade em relação a uma imagem previamente selecionada para o treinamento. As imagens são classificadas de acordo com a similaridade, analisando-se informações dos atributos extraídos das imagens e dos laudos. A identificação da similaridade é obtida pela extração de características, com a utilização da transformada de wavelets. / This work presents a computational strategy to consolidate the training of residents radiologists through the classification of mammographic images by similarity, analyzing information from reports made by experienced physicians, obtaining the attributes extracted from medical images. For the discovery of patterns that characterize the similarity apply techniques of digital image processing and data mining in mammographic images. Pattern recognition aims to achieve the classification of certain sets of images in classes. The classification of mammographic is performed using Artificial Neural Networks, through the classifier Self-Organizing Map (SOM). This work uses the image retrieval (CBIR-Content- Based Image Retrieval), considering the similarity in relation to an image already selected for training. The images are classified according to similarity, analyzing attribute information extracted from the images and reports. The identification of similarity was obtained by feature extraction, using the technique of wavelet transform.
|
Page generated in 0.0874 seconds