• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RISO-GCT – Determinação do contexto temporal de conceitos em textos.

ALVES, George Marcelo Rodrigues. 24 April 2018 (has links)
Submitted by Kilvya Braga (kilvyabraga@hotmail.com) on 2018-04-24T12:36:47Z No. of bitstreams: 1 GEORGE MARCELO RODRIGUES ALVES - DISSERTAÇÃO (PPGCC) 2016.pdf: 2788195 bytes, checksum: 45c2b3c7089a4adbd7443b1c08cd4881 (MD5) / Made available in DSpace on 2018-04-24T12:36:47Z (GMT). No. of bitstreams: 1 GEORGE MARCELO RODRIGUES ALVES - DISSERTAÇÃO (PPGCC) 2016.pdf: 2788195 bytes, checksum: 45c2b3c7089a4adbd7443b1c08cd4881 (MD5) Previous issue date: 2016-02-26 / Devido ao crescimento constante da quantidade de textos disponíveis na Web, existe uma necessidade de catalogar estas informações que surgem a cada instante. No entanto, trata-se de uma tarefa árdua e na qual seres humanos são incapazes de realizar esta tarefa de maneira manual, tendo em vista a quantidade incontável de dados que são disponibilizados a cada segundo. Inúmeras pesquisas têm sido realizadas no intuito de automatizar este processo de catalogação. Uma vertente de grande utilidade para as várias áreas do conhecimento humano é a indexação de documentos com base nos contextos temporais presentes nestes documentos. Esta não é uma tarefa trivial, pois envolve a análise de informações não estruturadas presentes em linguagem natural, disponíveis nos mais diversos idiomas, dentre outras dificuldades. O objetivo principal deste trabalho é criar uma abordagem capaz de permitir a indexação de documentos, determinando mapas de tópicos enriquecidos com conceitos e as respectivas informações temporais relacionadas. Tal abordagem deu origem ao RISO-GCT (Geração de Contextos Temporais), componente do Projeto RISO (Recuperação da Informação Semântica de Objetos Textuais), que tem como objetivo criar um ambiente de indexação e recuperação semântica de documentos possibilitando uma recuperação mais acurada. O RISO-GCT utilizou os resultados de um módulo preliminar, o RISO-TT (Temporal Tagger), responsável por etiquetar informações temporais presentes em documentos e realizar o processo de normalização das expressões temporais encontradas. Deste processo foi aperfeiçoada a abordagem responsável pela normalização de expressões temporais, para que estas possam ser manipuladas mais facilmente na determinação dos contextos temporais. . Foram realizados experimentos para avaliar a eficácia da abordagem proposta nesta pesquisa. O primeiro, com o intuito de verificar se o Topic Map previamente criado pelo RISO-IC (Indexação Conceitual), foi enriquecido com as informações temporais relacionadas aos conceitos de maneira correta e o segundo, para analisar a eficácia da abordagem de normalização das expressões temporais extraídas de documentos. Os experimentos concluíram que tanto o RISO-GCT, quanto o RISO-TT incrementado obtiveram resultados superiores aos concorrentes. / Due to the constant growth of the number of texts available on the Web, there is a need to catalog that information which appear at every moment. However, it is an arduous task in which humans are unable to perform this task manually, given the increased amount of data available at every second. Numerous studies have been conducted in order to automate the cataloging process. A research line with utility for various areas of human knowledge is the indexing of documents based on temporal contexts present in these documents. This is not a trivial task, as it involves the analysis of unstructured information present in natural language, available in several languages, among other difficulties. The main objective of this work is to create a model to allow indexing of documents, creating topic maps enriched with the concepts in text and their related temporal information. This approach led to the RISO-GCT (Temporal Contexts Generation), a part of RISO Project (Semantic Information Retrieval on Text Objects), which aims to create a semantic indexing environment and retrieval of documents, enabling a more accurate recovery. RISO-GCT uses the results of a preliminary module, the RISO-TT (Temporal Tagger) responsible the labeling temporal information contained in documents and carrying out the process of normalization of temporal expressions. Found. In this module the normalization of temporal expressions has been improved, in order allow a richer temporal context determination. Experiments were conducted to evaluate the effectiveness of the approach proposed a in this research. The first, in order to verify that the topic map previously created by RISO-IC has been correctly enriched with temporal information related to the concepts correctly, and the second, to analyze the effectiveness of the normalization of expressions extracted from documents. The experiments concluded that both the RISO-GCT, as the RISO-TT, which was evolved during this work, obtained better results than similar tools.
2

RISO - TT - Extração de expressões temporais em textos. / RISO - TT - Extraction of temporal expressions in texts.

SANTOS, Adriano Araújo. 26 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-26T15:09:11Z No. of bitstreams: 1 ADRIANO ARAÚJO SANTOS - DISSERTAÇÃO PPGCC 2013..pdf: 7720673 bytes, checksum: fdba828ba2c20b709ed7c3efbc93f751 (MD5) / Made available in DSpace on 2018-07-26T15:09:11Z (GMT). No. of bitstreams: 1 ADRIANO ARAÚJO SANTOS - DISSERTAÇÃO PPGCC 2013..pdf: 7720673 bytes, checksum: fdba828ba2c20b709ed7c3efbc93f751 (MD5) Previous issue date: 2013-04-22 / A necessidade de gerenciar a grande quantidade de documentos digitais existentes na atualidade, associada à incapacidade humana de analisar todas essas informações em tempo hábil, fez com que as pesquisas e o desenvolvimento de sistemas na área de automatização de processos para a gestão de informação crescessem, no entanto, essa atividade não é trivial. A maioria dos documentos disponíveis não tem estrutura bem definida (padronizada), o que torna difícil a criação de mecanismos computacionais que automatizem a análise das informações e gera a necessidade de se promoverem atividades intermediárias de conversão de informações em linguagem natural em informações estruturadas. Para isso, são necessárias atividades de reconhecimento de padrões nominais, temporais e espaciais. No tocante a essa pesquisa, o objetivo principal foi criar um mecanismo de reconhecimento de padrões temporais. Heuristicamente, foi criado um dicionário de regras baseadas em associações de padrões temporais e desenvolvido um módulo de marcação e recuperação de padrões temporais em uma arquitetura extensível e flexível, chamado RISO-TT, que implementa esse mecanismo de reconhecimento de padrões temporais. Esse módulo faz parte do projeto de pesquisa RISO (Recuperação da Informação Semântica de Objetos Textuais). Foram realizados dois experimentos para avaliar a eficiência do RISO-TT. O primeiro, com o intuito de verificar a extensibilidade e a flexibilidade do módulo RISO-TT, e o segundo, para analisar a eficiência da abordagem proposta com base em uma comparação com duas ferramentas consolidadas no meio académico (HeidelTime e SuTime). O RISO-TT obteve resultados superiores aos concorrentes no processo de marcação de expressões temporais, comprovados por meio de testes estatísticos. / The necessity of managing the large amount of digital existing documents nowadays, associated to the human inability to analyze ali this information in a fast manner, led to a growth of research in the area of system development for automation of the information management process. Nevertheless, this is not a trivial task. Most of the available documents do not have a standardized structure, hindering the development of computational schemes that can automate the analysis of information, thus requiring jobs of information conversion from natural language to structured information. For such, syntactic, temporal and spatial pattern recognition tasks are needed. Concerning the present study, the main objective is to create an advanced temporal pattern recognition mechanism. We created, heurístically, a rules dictionary of temporal patterns, developing a module in an extendable and flexible architecture for retrieval and marking. This module, called RISO-TT, implements this pattern recognition mechanism and is part of the RISO project (Retrieval of Semantic Information from Textual Objects). Two experiments were carried out in order to evaluate the efficiency of this approach. The first one was intended to verify the extendability and flexibility of the RISO-TT architecture and the second one to analyze the efficiency of the proposed approach, based on a comparison between the developed module and two Consolidated tools in the academic community (Heideltime and SuTime). RISO-TT outperformed the rivais in the temporal expression marking process, which was proved through statistical tests.
3

RISO - GCT - Determinação do contexto temporal de conceitos em textos. / RISO - GCT - Determination of the temporal context of concepts in texts.

ALVES, George Marcelo Rodrigues. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T17:59:05Z No. of bitstreams: 1 GEORGE MARCELO RODRIGUES ALVES - DISSERTAÇÃO PPGCC 2016..pdf: 15556672 bytes, checksum: 0109aeaa0d0af858151c540948a9859d (MD5) / Made available in DSpace on 2018-08-06T17:59:05Z (GMT). No. of bitstreams: 1 GEORGE MARCELO RODRIGUES ALVES - DISSERTAÇÃO PPGCC 2016..pdf: 15556672 bytes, checksum: 0109aeaa0d0af858151c540948a9859d (MD5) Previous issue date: 2016-02-26 / Devido ao crescimento constante da quantidade de textos disponíveis na Web, existe uma necessidade de catalogar estas informações que surgem a cada instante. No entanto, trata-se de uma tarefa árdua e na qual seres humanos são incapazes de realizar esta tarefa de maneira manual, tendo em vista a quantidade incontável de dados que são disponibilizados a cada segundo. Inúmeras pesquisas têm sido realizadas no intuito de automatizar este processo de catalogação. Uma vertente de grande utilidade para as várias áreas do conhecimento humano é a indexação de documentos com base nos contextos temporais presentes nestes documentos. Esta não é uma tarefa trivial, pois envolve a análise de informações não estruturadas presentes em linguagem natural, disponíveis nos mais diversos idiomas, dentre outras dificuldades. 0 objetivo principal deste trabalho é criar uma abordagem capaz de permitir a indexação de documentos, determinando mapas de tópicos enriquecidos com conceitos e as respectivas informações temporais relacionadas. Tal abordagem deu origem ao RISO-GCT (Geração de Contextos Temporais), componente do Projeto RISO (Recuperação da Informação Semântica de Objetos Textuais), que tem como objetivo criar um ambiente de indexação e recuperação semântica de documentos possibilitando uma recuperação mais acurada. 0 RISO-GCT utilizou os resultados de um módulo preliminar, o RISO-TT (Temporal Tagger), responsável por etiquetar informações temporais presentes em documentos e realizar o processo de normalização das expressões temporais encontradas. Deste processo foi aperfeiçoada a abordagem responsável pela normalização de expressões temporais, para que estas possam ser manipuladas mais facilmente na determinação dos contextos temporais. Foram realizados experimentos para avaliar a eficácia da abordagem proposta nesta pesquisa. 0 primeiro, com o intuito de verificar se o Topic Map previamente criado pelo RISO-IC (Indexação Conceituai), foi enriquecido com as informações temporais relacionadas aos conceitos de maneira correta e o segundo, para analisar a eficácia da abordagem de normalização das expressões temporais extraídas de documentos. Os experimentos concluíram que tanto o RISO-GCT, quanto o RISO-TT incrementado obtiveram resultados superiores aos concorrentes. / Due to the constant growth of the number of texts available on the Web, there is a need to catalog that information which appear at every moment. However, it is an arduous task in which humans are unable to perform this task manually, given the increased amount of data available at every second. Numerous studies have been conducted in order to automate the cataloging process. A research line with utility for various áreas of human knowledge is the indexing of documents based on temporal contexts present in these documents. This is not a trivial task, as it involves the analysis of unstructured information present in natural language, available in several languages, among other difficulties. The main objective of this work is to create a model to allow indexing of documents, creating topic maps enriched with the concepts in text and their related temporal information. This approach led to the RISO-GCT (Temporal Contexts Generation), a part of RISO Project (Semantic Information Retrieval on Text Objects), which aims to create a semantic indexing environment and retrieval of documents, enabling a more accurate recovery. RISO-GCT uses the results of a preliminary module, the RISO-TT (Temporal Tagger) responsible the labeling temporal information contained in documents and carrying out the process of normalization of temporal expressions. Found. In this module the normalization of temporal expressions has been improved, in order allow a richer temporal context determination. Experiments were conducted to evaluate the effectiveness of the approach proposed a in this research. The first, in order to verify that the topic map previously created by RISO-IC has been correctly enriched with temporal information related to the concepts correctly, and the second, to analyze the effectiveness of the normalization of expressions extracted from documents. The experiments concluded that both the RISO-GCT, as the RISO-TT, which was evolved during this work, obtained better results than similar tools.

Page generated in 0.089 seconds