• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles robustes et efficaces pour la reconnaissance d'action et leur localisation / Robust and efficient models for action recognition and localization

Oneata, Dan 20 July 2015 (has links)
Vidéo d'interprétation et de compréhension est l'un des objectifs de recherche à long terme dans la vision par ordinateur. Vidéos réalistes tels que les films présentent une variété de problèmes difficiles d'apprentissage machine, telles que la classification d'action / récupération d'action, de suivi humaines, la classification interaction homme / objet, etc Récemment robustes descripteurs visuels pour la classification vidéo ont été développés, et ont montré qu'il est possible d'apprendre classificateurs visuels réalistes des paramètres difficile. Toutefois, afin de déployer des systèmes de reconnaissance visuelle à grande échelle dans la pratique, il devient important d'aborder l'évolutivité des techniques. L'objectif principal est cette thèse est de développer des méthodes évolutives pour l'analyse de contenu vidéo (par exemple pour le classement ou la classification). / Video interpretation and understanding is one of the long-term research goals in computer vision. Realistic videos such as movies present a variety of challenging machine learning problems, such as action classification/action retrieval, human tracking, human/object interaction classification, etc. Recently robust visual descriptors for video classification have been developed, and have shown that it is possible to learn visual classifiers in realistic difficult settings. However, in order to deploy visual recognition systems on large-scale in practice it becomes important to address the scalability of the techniques. The main goal is this thesis is to develop scalable methods for video content analysis (eg for ranking, or classification).

Page generated in 0.0974 seconds