• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparative evaluation of network reconstruction methods in high dimensional settings / Comparação de métodos de reconstrução de redes em alta dimensão

Bolfarine, Henrique 17 April 2017 (has links)
In the past years, several network reconstruction methods modeled as Gaussian Graphical Model in high dimensional settings where proposed. In this work we will analyze three different methods, the Graphical Lasso (GLasso), Graphical Ridge (GGMridge) and a novel method called LPC, or Local Partial Correlation. The evaluation will be performed in high dimensional data generated from different simulated random graph structures (Erdos-Renyi, Barabasi-Albert, Watts-Strogatz ), using Receiver Operating Characteristic or ROC curve. We will also apply the methods in the reconstruction of genetic co-expression network for the differentially expressed genes in cervical cancer tumors. / Vários métodos tem sido propostos para a reconstrução de redes em alta dimensão, que e tratada como um Modelo Gráfico Gaussiano. Neste trabalho vamos analisar três métodos diferentes, o método Graphical Lasso (GLasso), Graphical Ridge (GGMridge) e um novo método chamado LPC, ou Correlação Parcial Local. A avaliação será realizada em dados de alta dimensão, gerados a partir de grafos aleatórios (Erdos-Renyi, Barabasi-Albert, Watts-Strogatz ), usando Receptor de Operação Característica, ou curva ROC. Aplicaremos também os metidos apresentados, na reconstrução da rede de co-expressão gênica para tumores de câncer cervical.
2

Comparative evaluation of network reconstruction methods in high dimensional settings / Comparação de métodos de reconstrução de redes em alta dimensão

Henrique Bolfarine 17 April 2017 (has links)
In the past years, several network reconstruction methods modeled as Gaussian Graphical Model in high dimensional settings where proposed. In this work we will analyze three different methods, the Graphical Lasso (GLasso), Graphical Ridge (GGMridge) and a novel method called LPC, or Local Partial Correlation. The evaluation will be performed in high dimensional data generated from different simulated random graph structures (Erdos-Renyi, Barabasi-Albert, Watts-Strogatz ), using Receiver Operating Characteristic or ROC curve. We will also apply the methods in the reconstruction of genetic co-expression network for the differentially expressed genes in cervical cancer tumors. / Vários métodos tem sido propostos para a reconstrução de redes em alta dimensão, que e tratada como um Modelo Gráfico Gaussiano. Neste trabalho vamos analisar três métodos diferentes, o método Graphical Lasso (GLasso), Graphical Ridge (GGMridge) e um novo método chamado LPC, ou Correlação Parcial Local. A avaliação será realizada em dados de alta dimensão, gerados a partir de grafos aleatórios (Erdos-Renyi, Barabasi-Albert, Watts-Strogatz ), usando Receptor de Operação Característica, ou curva ROC. Aplicaremos também os metidos apresentados, na reconstrução da rede de co-expressão gênica para tumores de câncer cervical.

Page generated in 0.0582 seconds