Spelling suggestions: "subject:"recurrence quantification"" "subject:"recurrences quantification""
21 |
Vorhersagbarkeit ökonomischer Zeitreihen auf verschiedenen zeitlichen SkalenMettke, Philipp 24 November 2015 (has links)
This thesis examines three decomposition techniques and their usability for economic and financial time series. The stock index DAX30 and the exchange rate from British pound to US dollar are used as representative economic time series. Additionally, autoregressive and conditional heteroscedastic simulations are analysed as benchmark processes to the real data.
Discrete wavelet transform (DWT) uses wavelike functions to adapt the behaviour of time series on different time scales. The second method is the singular spectral analysis (SSA), which is applied to extract influential reconstructed modes. As a third algorithm, empirical mode decomposition (END) leads to intrinsic mode functions, who reflect the short and long term fluctuations of the time series. Some problems arise in the decomposition process, such as bleeding at the DWT method or mode mixing of multiple EMD mode functions.
Conclusions to evaluate the predictability of the time series are drawn based on entropy - and recurrence - analysis. The cyclic behaviour of the decompositions is examined via the coefficient of variation, based on the instantaneous frequency. The results show rising predictability, especially on higher decomposition levels. The instantaneous frequency measure leads to low values for regular oscillatory cycles, irregular behaviour results in a high variation coefficient. The singular spectral analysis show frequency - stable cycles in the reconstructed modes, but represents the influences of the original time series worse than the other two methods, which show on the contrary very little frequency - stability in the extracted details.:1. Einleitung
2. Datengrundlage
2.1. Auswahl und Besonderheiten ökonomischer Zeitreihen
2.2. Simulationsstudie mittels AR-Prozessen
2.3. Simulationsstudie mittels GARCH-Prozessen
3. Zerlegung mittels modernen Techniken der Zeitreihenanalyse
3.1. Diskrete Wavelet Transformation
3.2. Singulärsystemanalyse
3.3. Empirische Modenzerlegung
4. Bewertung der Vorhersagbarkeit
4.1. Entropien als Maß der Kurzzeit-Vorhersagbarkeit
4.2. Rekurrenzanalyse
4.3. Frequenzstabilität der Zerlegung
5. Durchführung und Interpretation der Ergebnisse
5.1. Visuelle Interpretation der Zerlegungen
5.2. Beurteilung mittels Charakteristika
6. Fazit
|
22 |
Analyse et extraction de paramètres de complexité de signaux biomédicaux / Analysis and extraction of complexity parameters of biomedical signalsZaylaa, Amira 15 December 2014 (has links)
L'analyse de séries temporelles biomédicales chaotiques tirées de systèmes dynamiques non-linéaires est toujours un challenge difficile à relever puisque dans certains cas bien spécifiques les techniques existantes basées sur les multi-fractales, les entropies et les graphes de récurrence échouent. Pour contourner les limitations des invariants précédents, de nouveaux descripteurs peuvent être proposés. Dans ce travail de recherche nos contributions ont porté à la fois sur l’amélioration d’indicateurs multifractaux (basés sur une fonction de structure) et entropiques (approchées) mais aussi sur des indicateurs de récurrences (non biaisés). Ces différents indicateurs ont été développés avec pour objectif majeur d’améliorer la discrimination entre des signaux de complexité différente ou d’améliorer la détection de transitions ou de changements de régime du système étudié. Ces changements agissant directement sur l’irrégularité du signal, des mouvements browniens fractionnaires et des signaux tirés du système du Lorenz ont été testés. Ces nouveaux descripteurs ont aussi été validés pour discriminer des fœtus en souffrance de fœtus sains durant le troisième trimestre de grossesse. Des mesures statistiques telles que l’erreur relative, l’écart type, la spécificité, la sensibilité ou la précision ont été utilisées pour évaluer les performances de la détection ou de la classification. Le fort potentiel de ces nouveaux invariants nous laisse penser qu’ils pourraient constituer une forte valeur ajoutée dans l’aide au diagnostic s’ils étaient implémentés dans des logiciels de post-traitement ou dans des dispositifs biomédicaux. Enfin, bien que ces différentes méthodes aient été validées exclusivement sur des signaux fœtaux, une future étude incluant des signaux tirés d’autres systèmes dynamiques nonlinéaires sera réalisée pour confirmer leurs bonnes performances. / The analysis of biomedical time series derived from nonlinear dynamic systems is challenging due to the chaotic nature of these time series. Only few classical parameters can be detected by clinicians to opt the state of patients and fetuses. Though there exist valuable complexity invariants such as multi-fractal parameters, entropies and recurrence plot, they were unsatisfactory in certain cases. To overcome this limitation, we propose in this dissertation new entropy invariants, we contributed to multi-fractal analysis and we developed signal-based (unbiased) recurrence plots based on the dynamic transitions of time series. Principally, we aim to improve the discrimination between healthy and distressed biomedical systems, particularly fetuses by processing the time series using our techniques. These techniques were either validated on Lorenz system, logistic maps or fractional Brownian motions modeling chaotic and random time series. Then the techniques were applied to real fetus heart rate signals recorded in the third trimester of pregnancy. Statistical measures comprising the relative errors, standard deviation, sensitivity, specificity, precision or accuracy were employed to evaluate the performance of detection. Elevated discernment outcomes were realized by the high-order entropy invariants. Multi-fractal analysis using a structure function enhances the detection of medical fetal states. Unbiased cross-determinism invariant amended the discrimination process. The significance of our techniques lies behind their post-processing codes which could build up cutting-edge portable machines offering advanced discrimination and detection of Intrauterine Growth Restriction prior to fetal death. This work was devoted to Fetal Heart Rates but time series generated by alternative nonlinear dynamic systems should be further considered.
|
Page generated in 0.1316 seconds