Spelling suggestions: "subject:"redes neurais artificiais"" "subject:"redes neurais rtificiais""
61 |
Modelo para a predição da proporção dos combustíveis que alimentam um motor de três cilindros em um veículo compactoSilva, Paulo Esteves de Almeida 30 August 2018 (has links)
Submitted by Paulo Silva (p.esteves06@gmail.com) on 2018-10-03T15:39:40Z
No. of bitstreams: 1
Dissertação Paulo Esteves - Versão final corrigida.pdf: 7722568 bytes, checksum: 6a50645639458024d5397cd5bdc9fa38 (MD5) / Approved for entry into archive by Escola Politécnica Biblioteca (biengproc@ufba.br) on 2018-10-05T10:51:04Z (GMT) No. of bitstreams: 1
Dissertação Paulo Esteves - Versão final corrigida.pdf: 7722568 bytes, checksum: 6a50645639458024d5397cd5bdc9fa38 (MD5) / Made available in DSpace on 2018-10-05T10:51:04Z (GMT). No. of bitstreams: 1
Dissertação Paulo Esteves - Versão final corrigida.pdf: 7722568 bytes, checksum: 6a50645639458024d5397cd5bdc9fa38 (MD5) / FAPESB / Com a busca da eficiência energética nos veículos automotivos, levando-se em conta a necessidade de minimizar o impacto ambiental decorrente do uso desses veículos, os recentes esforços para melhorar os sistemas de controle da queima do combustível tornaram-se uma estratégia de destaque no mercado automotivo. O objetivo deste trabalho é o desenvolvimento de modelos para realização da predição da proporção de etanol presente em uma mistura de combustíveis utilizada em um veículo flex equipado com um motor de três cilindros. Os modelos são desenvolvidos com a utilização das informações de variáveis provenientes de medições realizadas pelo sistema de controle de um motor de três cilindros e por um acelerômetro tridimensional acoplado ao motor. É descrita a metodologia experimental aplicada para a aquisição dos sinais provenientes da operação de um motor de três cilindros, instalado em um veículo de passeio. Os sinais adquiridos foram tratados e utilizados em modelos baseados em estruturas de Regressão Linear Múltipla e Redes Neurais Artificiais para a predição da proporção em volume de etanol da mistura de combustíveis utilizada. Os modelos se mostraram eficientes na predição da proporção de etanol no combustível utilizado pelo motor, apresentando uma melhor aproximação entre os valores preditos e os valores reais quando comparados com os dados fornecidos pelo sistema de controle do motor. / With the pursuit of energy efficiency in automotive vehicles, taking into account the need to minimize the environmental impact of the use of these vehicles, recent efforts to improve fuel combustion control systems have become a prominent strategy in the automotive industry. The aim of this work is the development of models for prediction of the proportion of ethanol present in a fuel blend used in a flex vehicle equipped with a three-cylinder engine. The models are developed with the use of the information based on measurements made by the control system of a three-cylinder engine and a threedimensional accelerometer coupled to the engine. The experimental methodology applied for the signal acquisition from the operation of a three-cylinder engine, installed in a passenger vehicle, is described. The acquired signals were treated and used in models based on Multiple Linear Regression and Artificial Neural Networks for the prediction of the ethanol volume ratio on the fuel blend. The models proved to be efficient in predicting the proportion of ethanol in the fuel blend, presenting a better approximation between the predicted values and the actual values when compared with the data provided by the engine control system.
|
62 |
Previsão de demanda de energia elétrica por meio de redes neurais artificiaisAraújo, Milton Aluísio Gamboa January 2005 (has links)
Este estudo propõe um método alternativo para a previsão de demanda de energia elétrica, através do desenvolvimento de um modelo de estimação baseado em redes neurais artificiais. Tal método ainda é pouco usado na estimativa de demanda de energia elétrica, mas tem se mostrado promissor na resolução de problemas que envolvem sistemas de potência. Aqui são destacados os principais fatores que devem pautar a modelagem de um sistema baseada em redes neurais artificiais, que são: seleção das variáveis de entrada; quantidade de variáveis; arquitetura da rede; treinamento; previsão da saída. O modelo ora apresentado foi desenvolvido a partir de uma amostra de 125 municípios do Estado do Rio Grande do Sul (Brasil), nos anos de 1999 a 2002. Como variáveis de entrada, foram selecionados a temperatura ambiente (média e desvio-padrão anual), a umidade relativa do ar (média e desvio-padrão anual), o PIB anual e a população anual de cada município incluído na amostra. Para validar a proposta apresentada, são mostrados resultados baseados nas simulações com o modelo proposto.
|
63 |
Classificação de sinais de voz utilizando a transformada Wavelet Packet e redes neurais artificiaisCrovato, César David Paredes January 2004 (has links)
Este trabalho apresenta um sistema de classificação de voz disfônica utilizando a Transformada Wavelet Packet (WPT) e o algoritmo Best Basis (BBA) como redutor de dimensionalidade e seis Redes Neurais Artificiais (ANN) atuando como um conjunto de sistemas denominados “especialistas”. O banco de vozes utilizado está separado em seis grupos de acordo com as similaridades patológicas (onde o 6o grupo é o dos pacientes com voz normal). O conjunto de seis ANN foi treinado, com cada rede especializando-se em um determinado grupo. A base de decomposição utilizada na WPT foi a Symlet 5 e a função custo utilizada na Best Basis Tree (BBT) gerada com o BBA, foi a entropia de Shannon. Cada ANN é alimentada pelos valores de entropia dos nós da BBT. O sistema apresentou uma taxa de sucesso de 87,5%, 95,31%, 87,5%, 100%, 96,87% e 89,06% para os grupos 1 ao 6 respectivamente, utilizando o método de Validação Cruzada Múltipla (MCV). O poder de generalização foi medido utilizando o método de MCV com a variação Leave-One-Out (LOO), obtendo erros em média de 38.52%, apontando a necessidade de aumentar o banco de vozes disponível.
|
64 |
Localização de faltas de alta impedância em sistemas de distribuição de energia : uma metodologia baseada em redes neurais artificiaisMoreto, Miguel January 2005 (has links)
O presente trabalho apresenta uma nova metodologia de localização de faltas em sistemas de distribuição de energia. O esquema proposto é capaz de obter uma estimativa precisa da localização tanto de faltas sólidas e lineares quanto de faltas de alta impedância. Esta última classe de faltas representa um grande problema para as concessionárias distribuidoras de energia elétrica, uma vez que seus efeitos nem sempre são detectados pelos dispositivos de proteção utilizados. Os algoritmos de localização de faltas normalmente presentes em relés de proteção digitais são formulados para faltas sólidas ou com baixa resistência de falta. Sendo assim, sua aplicação para localização de faltas de alta impedância resulta em estimativas errôneas da distância de falta. A metodologia proposta visa superar esta deficiência dos algoritmos de localização tradicionais através da criação de um algoritmo baseado em redes neurais artificiais que poderá ser adicionado como uma rotina adicional de um relé de proteção digital. O esquema proposto utiliza dados oscilográficos pré e pós-falta que são processados de modo que sua localização possa ser estimada através de um conjunto de características extraídas dos sinais de tensão e corrente. Este conjunto de características é classificado pelas redes neurais artificiais de cuja saída resulta um valor relativo a distância de falta. Além da metodologia proposta, duas metodologias para localização de faltas foram implementadas, possibilitando a obtenção de resultados comparativos. Os dados de falta necessários foram obtidos através de centenas de simulações computacionais de um modelo de alimentador radial de distribuição. Os resultados obtidos demonstram a viabilidade do uso da metodologia proposta para localização de faltas em sistemas de distribuição de energia, especialmente faltas de alta impedância.
|
65 |
Caracterização de microorganismos aquáticos por processamento digital de imagens e redes neurais artificiaisSantos, Sonia Magalhaes dos January 2001 (has links)
A identificação e o monitoramento de microorganismos aquáticos, como bactérias e microalgas, tem sido uma tarefa árdua e morosa. Técnicas convencionais, com uso de microscópios e corantes, são complexas, exigindo um grande esforço por parte dos técnicos e pesquisadores. Uma das maiores dificuldades nos processos convencionais de identificação via microscopia é o elevado número de diferentes espécies e variantes existentes nos ambientes aquáticos, muitas com semelhança de forma e textura. O presente trabalho tem por objetivo o desenvolvimento de uma metodologia para a caracterização e classificação de microorganismos aquáticos (bactérias e microalgas), bem como a determinação de características cinemáticas, através do estudo da mobilidade de microalgas que possuem estruturas que permitem a natação (flagelos). Para caracterização e reconhecimento de padrões as metodologias empregadas foram: o processamento digital de imagens e redes neurais artificiais (RNA). Para a determinação da mobilidade dos microorganismos foram empregadas técnicas de velocimetria por processamento de imagens de partículas em movimento (Particle Tracking Velocimetry - PTV). O trabalho está dividido em duas partes: 1) caracterização e contagem de microalgas e bactérias aquáticas em amostras e 2) medição da velocidade de movimentação das microalgas em lâminas de microscópio. A primeira parte envolve a aquisição e processamento digital de imagens de microalgas, a partir de um microscópio ótico, sua caracterização e determinação da densidade de cada espécie contida em amostras. Por meio de um microscópio epifluorescente, foi possível, ainda, acompanhar o crescimento de bactérias aquáticas e efetuar a sua medição por operadores morfológicos. A segunda parte constitui-se na medição da velocidade de movimentação de microalgas, cujo parâmetro pode ser utilizado como um indicador para se avaliar o efeito de substâncias tóxicas ou fatores de estresse sobre as microalgas. O trabalho em desenvolvimento contribuirá para o projeto "Produção do Camarão Marinho Penaeus Paulensis no Sul do Brasil: Cultivo em estruturas Alternativas" em andamento na Estação Marinha de Aquacultura - EMA e para pesquisas no Laboratório de Ecologia do Fitoplâncton e de Microorganismos Marinhos do Departamento de Oceanografia da FURG. O trabalho propõe a utilização dos níveis de intensidade da imagem em padrão RGB e oito grandezas geométricas como características para reconhecimento de padrões das microalgas O conjunto proposto de características das microalgas, do ponto de vista de grandezas geométricas e da cor (nível de intensidade da imagem e transformadas Fourier e Radon), levou à geração de indicadores que permitiram o reconhecimento de padrões. As redes neurais artificiais desenvolvidas com topologia de rede multinível totalmente conectada, supervisionada, e com algoritmo de retropropagação, atingiram as metas de erro máximo estipuladas entre os neurônios de saída desejados e os obtidos, permitindo a caracterização das microalgas.
|
66 |
Redes neurais artificiais, análise de sensibilidade e o comportamento de funções de comércio exterior do BrasilSilva, Alexandre Bandeira Monteiro e January 2002 (has links)
Nesta tese são estimadas funções não lineares de importação e exportação para o Brasil, utilizando a metodologia de redes neurais artificiais, a partir de dados trimestrais, no período de 1978 a 1999. Com relação às importações, partindo-se da hipótese de país pequeno, as estimações são feitas para a demanda de importações totais, de bens intermediários e de material elétrico. Para as exportações, o pressuposto de país pequeno, num contexto de concorrência monopolística, é utilizado, de maneira que as estimações são feitas para a oferta e demanda por exportações brasileiras. As séries selecionadas são as exportações totais, as exportações de manufaturados e as exportações de material elétrico. A metodologia adotada para as importações procura visualizar a não linearidade presente nas séries de comércio exterior e encontrar a topologia de rede que melhor represente o comportamento dos dados, a partir de um processo de validação do período analisado. Procura observar, também, a sensibilidade das saídas das redes a estímulos nas variáveis de entrada, dado a dado e por formação de clusters. Semelhante método é utilizado para as exportações, com a ressalva que, diante de um problema de simultaneidade, o processo de ajuste das redes e análise da sensibilidade é realizado a partir de uma adaptação do método de equações simultâneas de dois estágios. Os principais resultados para as importações mostram que os dados apresentam-se de maneira não linear, e que ocorreu uma ruptura no comportamento dos dados em 1989 e 1994. Sobretudo a partir dos anos 90, as variáveis que se mostram mais significativas são o PIB e a taxa de câmbio, seguidas da variável utilização de capacidade produtiva, que se mostra com pouca relevância Para o período de 1978 a 1988, que apresenta um reduzido impacto das variáveis, a taxa de câmbio é relevante, na explicação do comportamento das importações brasileiras, seguida da utilização de capacidade produtiva, que demonstra-se significativa, apenas, para a série de bens intermediários. Para as exportações, os dados, também, se apresentam de maneira não linear, com rupturas no seu comportamento no final da década de 80 e meados de 1994. Especificamente, para a oferta e a demanda, as variáveis mais importantes foram a taxa de câmbio real e o PIB mundial, respectivamente. No todo, as séries mais importantes na explicação das importações e exportações foram a importação total e de bens intermediários e a exportação total e de manufaturados. Tanto para as importações, quanto para as exportações, os resultados mais expressivos foram obtidos para os dados mais agregados. Por fim, com relação às equações das exportações brasileiras, houve uma superioridade de ajuste e significância das variáveis das equações de demanda, frente às de oferta, em explicar os movimentos das exportações brasileiras.
|
67 |
Utilização da inteligência artificial (redes neurais artificiais) para a classificação da resistência a antimicrobianos e do comportamento bioquímico de amostras de Escherichia coli isoladas de frangos de corteSalle, Felipe de Oliveira January 2009 (has links)
O estudo foi feito através de um banco de registros de amostras de Escherichia coli, isoladas de frangos de corte. Na presente tese foram utilizadas 246 amostras do patógeno citado acima, com todas as características utilizadas em recentes trabalhos acadêmicos. Para a classificação das amostras utilizou-se a inteligência artificial, onde traçou-se uma interrelação entre as variáveis usadas: origem (lesões cutâneas, quadros respiratórios, cama), motilidade das amostras, lesões causadas (aerossaculite, pericardite, peritonite, periepatite, celulite), IP, genes (cvaC, iss, iutA, falA, Kpsll, papC, tsh), 14 anitimicrobianos (Amicacina, Amoxacilina e Ácido clavulânico, Ampicilina, Cefalexina, Cefuroxina, Ceftiofur, Ciprofloxacina, Clindamicina, Cotrimoxazol, Enrofloxacina, Gentamicina, Norfloxacina, Ofloxacina, Tetraciclina) e os bioquímicos variáveis (Adonitol, Ornitina, Arginina, Dulcitol, Salicina, Sacarose, Rafinose). No total foram feitas durante a tese em torno de 140 redes neurais, das quais foram utilizadas somente as que melhor apresentaram uma classificação correta e dentre estas as que continham um número menor de variáveis envolvidas. Durante o trabalho foram anexados 5 artigos científicos. Os artigos foram intitulados da seguinte maneira: Resistência antimicrobiana de amostras de Escherichia coli oriundas de camas de aviários, lesões de celulite e de quadros respiratórios de frangos de corte do Rio Grande do Sul; Utilização de inteligência artificial (redes neurais artificiais) para classificar a resistência antimicrobiana de amostras de Escherichia coli isoladas de frango de corte; Utilização de inteligência artificial (redes neurais artificiais) para a classificação do comportamento bioquímico de amostras de Escherichia coli isoladas de frangos de corte; Use of artificial intelligence (artificial meural networks) to classify the pathogenicity of Escherichia coli isolates from broilers; Genes associated with pathogenicity of avian Escherichia coli (APEC) isolated from respiratory cases of poultry. Nos primeiro artigo observou-se uma multi-resistência a pelo menos duas das 14 drogas utilizadas. No segundo artigo citado, notou-se que dentre as amostras analisadas corretamente apresentaram uma porcentagem de 84% a 100% nas amostras intermediárias, 81% a 100% para as resistentes, 89% a 100% sensíveis. No terceiro trabalho, foi concluído que as redes feitas foram capazes de classificar corretamente as amostras com uma amplitude de 87,80% a 98,73%. Além disso, a sensibilidade e a especificidade das classificações obtidas variam de 59,32% a 99,47% e de 80,00% a 98,54%, respectivamente. No quarto artigo, seguindo a ordem descrita acima, as redes construídas que usaram 11 categorias dos índices de patogenicidade, apresentaram 54,27% de classificações corretas, no entanto quando foram usadas somente 3 categorias essa porcentagem subiu para 80,55%. Houve um aumento das classificações corretas para 83,96% quando as categorias foram apenas duas. No quinto artigo, foram usadas um total de 61 amostras de Escherichia coli, onde foram testadas a presença dos genes citados no início deste resumo, e houve uma presença de 73,8% do gene iss, 55,7% do tsh, 45,9% do iutA, 39,3% do felA, o papc apareceu em 24,3% das amostras, o cvaC em 23%, e por fim, o kpsll em 18%. Mais uma vez pode-se afirmar, que o uso das redes neurais artificiais cada mais, está servindo como uma ferramenta que dá um suporte científico para a tomada de decisão. / This study was made using a data bank with samples of Escherichia coli, isolated from broilers. In the present thesis, 246 samples of the mentioned pathogenic bacteria, which were cited above, with all the characteristics used in recent academic works. For the classification of the samples, artificial intelligence was used, and a correlation between the taken variables was established: origin (cutaneous lesions, lesions of poultry with respiratory signals, litter of poultry house), motility of the samples, injuries (aerosaculitis, pericarditis, peritonitis, periepatitis, celullitis), PI, genes (cvaC, iss, iutA, falA, Kpsll, papC, tsh), 14 antimicrobials (Amikacyn, Amoxacillin and clavulanic acid, Ampicilin, Cefalexin, Cefuroxime, Ceftiofur, Ciprofloxacin, Clindamycin, Cotrimoxazole, Enrofloxacin, Gentamycin, Norfloxacin, Ofloxacin, Tetracyclin) and the biochemical profile (Adonitol, Ornithine, Arginine, Dulcitol, Salicin, Sucrose, Raffinose). In this thesis, 140 neural networks were constructed, from which the ones that presented the best correct classifications, and the ones that used the lesser number of variables were chosen. Five scientific articles were annexed. The articles were entitled in the following way: Antimicrobial resistance of samples of Escherichia coli from litter of poultry house, celullitis lesions, and lesions of poultry with respiratory signals in broilers of Rio Grande do Sul; The use of artificial intelligence (artificial neural networks) to classify the antimicrobial resistance isolated from samples of Escherichia coli in broilers; The use of artificial intelligence (artificial neural networks) to classify the biochemical profile of samples isolated from Escherichia coli in broilers; The use of artificial intelligence (artificial neural networks) to classify the pathogenicity of Escherichia coli isolates from broilers; Genes associated with pathogenicity of avian Escherichia coli (APEC) isolated from respiratory cases of poultry. In the first article a multi resistance at least to two of the 14 used drugs was observed. In the second article, it was noticed that 84% to 100% were intermediate, 81% to 100% were resistant, and 89% to 100% were sensible. In the third work, it was concluded that the neural networks were able to classify correctly with an amplitude from 87.80% to 98.73%. Moreover, the sensitivity and the specificity of the gotten classifications vary from 59.32% to 99.47% and from 80.00% to 98.54%, respectively. In the fourth article, following the described order above, the constructed neural networks, which used 11 categories of the pathogenicity indices, presented 54.27% of correct classifications, when just 3 categories were used, the correct classification went up to 80,55%. There was an increase in the correct classifications to 83.96% when the categories were only two. In the fifth paper, it was used a total of 61 samples of Escherichia coli, and tested the presence of the cited genes at the beginning of this summary, and the presence was 73.8% of the gene iss, 55.7% of tsh, 45.9% of iutA, 39.3% of felA, papc appeared in 24.3% of the samples, cvaC in 23%, and finally, kpsll in 18%. One more time, it can be affirmed that the use of artificial neural networks is serving as a tool to provide a scientific support for the decision making.
|
68 |
Estabelecimento de uma nova metodologia para a avaliação da depleção linfóide folicular da bolsa de Fabricius através análise digital de imagem e de redes neurais artificiaisMoraes, Lucas Brunelli de January 2008 (has links)
A avicultura industrial apresenta altos índices produtivos, caracterizando-se pela alta tecnificação e pela eficiência. Inúmeros fatores podem prejudicar estes resultados, dentre os mais importantes citam-se as doenças imunodepressoras, as quais são agentes primários para o estabelecimento de inúmeros patógenos capazes de agravar o quadro clínico das aves, elevando ainda mais as perdas. Em vista disso, resolveu-se estudar um método mais eficaz para a determinação da depleção linfocitária da bolsa de Fabricius, órgão fundamental para a proliferação e maturação de linfócitos B. Dentre as doenças que mais acometem a bolsa de Fabricius citam-se a doença infecciosa da bolsa de Fabricius, as micotoxicoses e a anemia infecciosa. Foram utilizadas 50 amostras de bolsa de Fabricius coletadas intactas, processadas e o escore óptico de depleção estabelecido (de 1 a 5). As bolsas foram divididas em quadrantes e 12 folículos selecionados por amostra. As imagens foram adquiridas, analisadas com o software MATLAB® 6.5 e suas características extraídas. Com os dados foram geradas redes neurais (NEUROSHELL®), comparando-se os escores óticos e a classificação realizada pela rede. A rede foi capaz de classificar corretamente com alta sensibilidade (até 89,81%) e especificidade (até 96,17%) a maioria dos folículos, tendo um melhor desempenho utilizando-se três categorias (sensibilidade de até 79,39% e especificidade de até 91,94%) e duas categorias (sensibilidade e especificidade chegando a 92,54%). Os resultados mostraram que é possível a utilização de análise de imagem e redes neurais para a classificação histopatológica de depleção linfocitária da bolsa de Fabricius. A análise de imagem é uma ferramenta prática, com resultados objetivos, dimensiona o erro classificatório e padroniza a avaliação da depleção linfocitária bolsa. / The industrial poultry has high productive indices, characterizing itself for the high technification and efficiency. Many factors can harm these results, the imunodepressives disease are amongst the most important causes. These diseases are the primary agents for the establishment of many secondary pathogens, aggravating the losses. In sight of this, we decided to study a more efficient method for the determination of the lymphoid depletion of bursa of Fabricius. The infectious bursal disease, the micotoxins and the infectious chicken anemia are the most important diseases of bursa of Fabricius. Fifty BF were examined by conventional optical microscopy and digital images were acquired and processed using MATLAB® 6.5 software. The ANN was generated using NEUROSHELL® CLASSIFIER software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles with sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility and specificity increased significantly to 90 and 92%, respectively. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition.
|
69 |
Uso de redes neurais artificiais e transformada de Stockwell na localização de faltas em linhas de transmissão / Artificial neural network and Stockwell transform for fault location in transmission linesSouza, Saulo Cunha Araújo de 26 June 2015 (has links)
SOUZA, S. C. A. Uso de redes neurais artificiais e transformada de Stockwell na localização de faltas em linhas de transmissão. 2015. 112 f. Dissertação (Mestrado em Engenharia Elétrica) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Marlene Sousa (mmarlene@ufc.br) on 2015-10-29T11:59:42Z
No. of bitstreams: 1
2015_dis_scasouza.pdf: 2068013 bytes, checksum: 4f455a7e7936bf1e94d2ee9f09920f2b (MD5) / Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2015-11-03T17:51:13Z (GMT) No. of bitstreams: 1
2015_dis_scasouza.pdf: 2068013 bytes, checksum: 4f455a7e7936bf1e94d2ee9f09920f2b (MD5) / Made available in DSpace on 2015-11-03T17:51:13Z (GMT). No. of bitstreams: 1
2015_dis_scasouza.pdf: 2068013 bytes, checksum: 4f455a7e7936bf1e94d2ee9f09920f2b (MD5)
Previous issue date: 2015-06-26 / This paper presents an automatic fault location method in transmission lines based on the Travelling Waves Theory (TWT) using the Stockwell Transform (ST) to determine the travelling waves propagation time and the dominant frequency of transient signals generated by faults. The method considers the case where there is no communication between terminals or loss of synchronism between the devices responsible for estimating the location of faults using, therefore, only data from one terminal. Single-phase faults only involving one of the phases and the earth area evaluated, which occur in the first half of a transmission line of unknown parameters. It is observed that the method (i) wasn’t sensitive to fault resistance variations and inception angle and (ii) the obtained results presented errors between 0,10% and 5,82% for faults that occurred between 7km and 99km from the monitoring terminal. To improve the accuracy of estimating the fault location, an Artificial Neural Network (ANN) of the type MLP (Multi-Layer Perceptron) is designed, and trained with characteristics extracted from the faulty signals using ST. The ATP (Alternative Transient Program) software was adopted for simulation of a three phase transmission line which voltage signals were sampled at 200kHz. The simulations were performed exploring 1280 combinations of the following parameters: fault locations, fault resistances and inception angle. The method was developed using the software MATLAB®. According to the obtained results, the combination of ST with ANN presented better results than the application of ST and TWT. Such improvement is highlighted for the estimation of fault location at greater distances from the monitoring terminal, with errors between 0,02% and 1,56% for faults that occurred between 7km and 99km from the monitoring terminal. / Este trabalho apresenta um método automático de localização de faltas em linhas de transmissão baseado na Teoria das Ondas Viajantes (TOV) utilizando a Transformada de Stockwell (TS) para determinação dos tempos de propagação das ondas viajantes e da frequência dominante dos sinais transitórios gerados pelas situações de falta. O método considera o caso em que não há comunicação entre terminais ou há perda de sincronismo entre os equipamentos responsáveis pela estimação da localização das faltas utilizando, portanto, dados provenientes de apenas um terminal. Consideram-se faltas monofásicas envolvendo uma das fases e a terra, as quais ocorrem na primeira metade de uma linha de transmissão de parâmetros desconhecidos. Observa-se que o método (i) não se mostrou sensível a variações de resistência de falta e ângulo de incidência e (ii) os resultados obtidos apresentam erros entre 0,10% e 5,82% para faltas que ocorreram entre 7km e 99km do terminal de monitoramento. Para a melhoria da precisão na estimação da localização das faltas foi projetada uma Rede Neural Artificial (RNA) do tipo MLP (Multi-Layer Perceptron), treinada a partir de características dos sinais faltosos extraídas através da TS. Foram utilizados os sinais trifásicos de tensão amostrados na frequência de 200kHz gerados a partir de simulações no software ATP (Alternative Transiente Program), no qual foram realizadas 1280 simulações explorando diversas localizações e resistências de falta e ângulo de incidência. O método foi aplicado utilizando o software MATLAB®. De acordo com os resultados obtidos, a combinação da TS e RNA projetada apresentou melhores resultados do que a aplicação da TS e TOV, destacando-se na estimação da localização de faltas que ocorreram a maiores distâncias do terminal de monitoramento, com erros entre 0,02% e 1,56% para faltas que ocorreram entre 7km e 99km do terminal de monitoramento.
|
70 |
Classificação supervisionada de pedopaisagens do domínio dos mares de morros utilizando Redes Neurais Artificiais / Landscapes supervised classification of mountainous Areas using Artificial Neural NetworkCarvalho Junior, Waldir de 03 August 2005 (has links)
Submitted by Nathália Faria da Silva (nathaliafsilva.ufv@gmail.com) on 2017-07-03T11:40:37Z
No. of bitstreams: 1
texto completo.pdf: 9957574 bytes, checksum: 03cd1b73f67de78f8c327fa4451cfa66 (MD5) / Made available in DSpace on 2017-07-03T11:40:37Z (GMT). No. of bitstreams: 1
texto completo.pdf: 9957574 bytes, checksum: 03cd1b73f67de78f8c327fa4451cfa66 (MD5)
Previous issue date: 2005-08-03 / O presente estudo foi desenvolvido com o objetivo de compreender a organização dos solos de paisagens dos mares de morros, reconhecer seus padrões e subsidiar seu mapeamento. A área de estudo situa-se na Região Noroeste fluminense, englobada pela folha topográfica Varre Sai do IBGE, que abrange parte dos municípios de Natividade, Porciúncula e Varre Sai. Para isso foram avaliadas as feições geomorfométricas que definem um padrão geomórfico das paisagens, sendo composta por altimetria, altimetria relativa, aspecto, curvatura, curvatura plana, perfil de curvatura, declividade, sentido do escoamento, escoamento acumulado e distância euclidiana da drenagem, sendo todas estas feições obtidas por técnicas de geoprocessamento. Todos os atributos foram obtidos a partir do modelo digital de elevação e, em razão disso, os dados primários de elevação foram os mais precisos possíveis. Através destes atributos geomorfométricos elaborou-se um padrão geomorfométrico das paisagens definidas e foram conduzidas classificações supervisionadas, utilizando-se redes neurais artificiais e o algoritmo de máxima verossimilhança, para fins de comparação. Os resultados mostraram ser possível a utilização de redes neurais artificiais para a classificação de paisagens de áreas montanhosas sob dissecação homogênea, com uma exatidão global de 70%, um pouco acima daquela obtida pelo algoritmo de máxima verossimilhança, que obteve uma exatidão global de aproximadamente 66%. Este estudo mostrou que a utilização de técnicas de geoprocessamento para gerar os atributos geomorfométricos, aliados a classificadores supervisionados, pode subsidiar o delineamento dos levantamentos de solos, tornando-os mais rápidos, menos dependentes da experiência do mapeador e menos onerosos, diminuindo a subjetividade dos mesmos. Constitui-se de uma abordagem nova no Brasil, que deve ser estendida para outras áreas com informações mais precisas de altimetria, para testar a sua eficácia. / The present study was developed with the objective of understanding the soils organization on landscapes of mountainous areas, to recognize its patterns and to subsidize its surveys. The study area is in the Northwest Region of the State of Rio de Janeiro, included by the IBGE ́s topographical leaf “Varre Sai”, that englobe part of the municipal districts of Natividade, Porciúncula and Varre Sai. For that they were appraised the geomorphometrics features that define a geomorphic signature of the landscapes, being composed by elevation, relative elevation, aspect, curvature, curvature planes, curvature profile, slope, flow direction, flow accumulation and drainage ́s euclidian distance, being all these features obtained by geoprocessing techniques. All the attributes were obtained from the digital elevation model and, in reason of that, the primary data of elevation were the most precise possible. Through these geomorphometric attributes a geomorphic signature of the defined landscapes was elaborated and supervised classifications were made, being used artificial neural network and the algorithm of maximum verisimilitude, for comparison ends. The results showed to be possible the use of artificial neural network for the classification of landscapes of mountainous areas, with a global accuracy of 70%, a little above that obtained by the algorithm of maximum verisimilitude, that obtained a global accuracy of approximately 66%. This study showed that the use of geoprocessamento techniques to generate the geomorphometrics attributes, aided with supervised classifiers, can subsidize the soils surveys, turning them faster, less dependents of the experience of the expert and less onerous, decreasing the subjectivity. It is constituted of an unpublished approach in Brazil, that should be extended for others areas with more precise elevation information, in order to test the effectiveness.
|
Page generated in 0.0891 seconds