Spelling suggestions: "subject:"redes neurais"" "subject:"aedes neurais""
51 |
Rede neural com dinâmica interna aplicada a problemas de identificação e controle não-linear /Oliveira, Roberto Célio Limão de January 1999 (has links)
Tese (Doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. / Made available in DSpace on 2012-10-18T20:31:21Z (GMT). No. of bitstreams: 0Bitstream added on 2016-01-09T02:25:00Z : No. of bitstreams: 1
145025.pdf: 7745299 bytes, checksum: 84841e3dc505d10af146921ae15c21aa (MD5)
|
52 |
Uma proposta de controle neural adaptativo para o posicionamento de um braço mecânico / Positioning a robot arm using an adaptive neural controllerFerreira, Ana Paula Ludtke January 1996 (has links)
Inicialmente concebidos para operar em ambientes industriais fechados, os robôs vem se tornando cada vez mais difundidos na sociedade. Suas atribuições não se limitam mais exclusivamente a execução de simples tarefas de repetição, mas a uma interação efetiva com o mundo em que se inserem. Para atingir tal objetivo, estes robôs devem possuir um controlador flexível, capaz de adaptar-se continuamente ao mundo dinâmico que o cerca. A maioria das soluções para o posicionamento de um braço, manipulador funcionam através do mapeamento de posições/orientações espaciais e de configurações das juntas do braço. Uma vez que a função cinemática direta não possui inverso global, diversas restrições devem ser adicionadas ao sistema de modo a diminuir a quantidade de soluções possíveis. Este tipo de controlador não e flexível, uma vez que qualquer modificação no estado do sistema pode tornar o controlador Este fato obriga a introdução de novos paradigmas na programação de robôs. Redes neurais possuem a capacidade de solucionar problemas não-lineares que, de outra forma, tornam-se muito difíceis de tratar matematicamente. Devido a natureza altamente não-linear do controle de um braço manipulador articulado, seja da parte cinemática ou dinâmica do processo, redes neurais vem sendo utilizadas sistematicamente na definição de sistemas de controle robóticos. Porem, apesar da grande versatilidade das redes neurais, estas tem sido, em grande parte, utilizadas apenas como sistemas de mapeamento não-linear. Tanto nos problemas cinemáticos quanto dinâmicos, existe um processo de treinamento onde a rede armazena diversos estados possíveis para o sistema e, após este processo, busca as soluções previamente armazenadas na rede. Contudo, esta abordagem não e a mais adequada para sistemas abertos, ou seja, sistemas que não são completamente conhecidos e que podem sofrer transformações no decorrer do seu funcionamento. Este fato leva a que soluções armazenadas para uma determinada configuração do sistema não funcionem para outras configurações. Este trabalho apresenta uma estratégia de controle neural adaptativo para o posicionamento de um braço de robô no espaço. Diferentemente das abordagens tradicionais, não existe um processo de treinamento da rede, mas sim uma continua adaptação do bravo de modo a se aproximar da localização espacial (posição e orientação) desejada. Desta forma, qualquer que seja o estado corrente do ambiente no qual o sistema robótico esteja inserido, este e capaz de encontrar uma solução adaptativamente, sem as limitações impostas por configurações de braço previamente armazenadas. / Initially conceived to work inside closed industrial environments, robots are becoming part of our everyday lives. They are not demanded to execute repeated simple tasks anymore, but to interact with the world around them in an efficient and intelligent way. In order to achieve this goal, those robots must have a flexible controller, capable of adapting itself to a dynamic world. The majority of solutions to position a robot arm try to map a spatial position and orientation to a joint configuration. Since the forward kinematics function has no global inverse, several constraints must be added in order to prune the solution space, and the arm position will be restricted to the one previously mapped as the problem solution. This is not a flexible solution because any obstacle in the way will turn this approach useless. This fact obliges us to use new paradigms when programming robots, because known control techniques are, most of the time, no longer suitable. The problem of positioning a robot arm in the three-dimensional space has been studied for a long time. However, most solutions developed until now, despite the fact of providing great reliability and accuracy, lack the necessary flexibility to permit the arm to move in an open environment. Most problems to be solved by a robot arm in uncontrolled environments are mostly like the ones we solve in a daily basis, such as pick and place tasks. Those tasks don't necessarily need the accuracy provided by the known methods to positon an arm, but they do need the degree of adaptivity and flexibility that humans possess. In this thesis we will present a neural adaptive approach to solve the problem of positioning a robot arm in the space. This method works by incorporating the state of the system into the network. The network input is the current state of the system (the current arm position and orientation) and the outputs are the changes in the state variables (the joint values) in order to approximate the current state to the desired one. This is a closed-loop neural control scheme and it is done in real time without needing any previous training phase.
|
53 |
Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentosPontes, Fabrício José [UNESP] 09 August 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:22Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-08-09Bitstream added on 2014-06-13T21:04:12Z : No. of bitstreams: 1
pontes_fj_dr_guara.pdf: 2076253 bytes, checksum: e0151bbfd7f5dd6f59a5364cd9097f4d (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O presente trabalho oferece contribuições à modelagem da rugosidade da peça em processos de usinagem por meio de redes neurais artificiais. Propõe-se um método para o projeto de redes. Perceptron Multi-Camada (Multi-Layer Percepton, ou MLO) e Função de Base radial Radial Basis Function, ou RBF) otimizadas para a predição da rugosidade da pela (Ra). Desenvolve-se um algoritmo que utiliza de forma hibrida a metodologia do projeto de experimentos por meio das técnicas dos fatoriais completose de Variações Evolucionária em Operações (EVOP). A estratégia adotada é a de utilizar o projeto de experimentos na busca de configurações de rede que favoreçam estatisticamente o desempenho na tarefa de predição. Parâmetro de corte dos processos de usinagem são utilizados como entradas das redes. O erro médio absoluto em porcentagem (MAE %) do decil inferioir das observações de predição para o conjunto de testes é utilizado como medida de desempnho dos modelos. Com o objetivo de validar o métido proposto são empregados casos de treinamento gerados a partir de daods obtidos de trabalhos de literatura e de experimentos de torneamento do aço ABNT 121.13. O método proposto leva á redução significativa do erro de predição da rugosidade nas operações de usinagem estudadas, quando se compara seu desempenho ao apresentado por modelos de regressão, aos resultados relatados pela literatura e ao desempenho de modelos neurais propostos por um pacotecomputacional comercial para otimização de configurações de rede. As redes projetadas segundo o método proposto possuem dispersão dos erros de predição significativamente reduzidos na comparação. Observa-se ainda que rede MLP atingem resultados estatisticamente superior aos obtidos pelas melhores redes RBF / The present work offers some contributions to the area of surface roughness modeling by Artificial Neural Network in machining processes. Ir proposes a method for the project networks of MLP (Multi-Layer Perceptron) and RBF (Radial Basis Function) architectures optimized for prediction of Average Surface Roughness (Ru). The methid is expressed in the format of an algorithm employing two techniques from the DOE (Design of Experiments) methodology: Full factorials and Evolutionary Operations(EVOP). The strategy adopted consists in the sistematic use of DOE in a search for network configurations that benefits performance in roughess prediction. Cutting para meters from machining operations are employed as network inputs. Themean absolute error in percentage (MAE%) of the lower decile of the predictions for the test set is used as a figure of merit for network performance. In order to validate the method, data sets retrieved from literature, as well as results of experiments with AISI/SAE free-machining steel, are employed to form training and test data sets for the networks. The proposed algorithm leads to significant reduction in prediction error for surface roughness when compared to the performance delivred by a regression model, by the networks proposed by the original studies data was borrowed from and when compared models proposed by a software package intend to search automatically for optimal network configurations. In addition, networks designed acording to the proposed algorithm displayed reduced dispersion of prediction error for surface roughness when compared to the performance delivered by a regression model, by the networks proposed by the original studies data was borrowed from and when compared to neural models proposed by a software package intended to searchautomatically for optimal network configurations. In addition, networks designed according to the proposed algorith ... (Complete abstract click electronic access below)
|
54 |
Previsão contínua de níveis fluviais com redes neurais utilizando previsão de precipitação : investigação metodológica da técnicaDornelles, Fernando January 2007 (has links)
Os sistemas de alerta de cheias exigem dos modelos de previsão de níveis, precisão e antecipação adequadas. Especialmente em bacias pequenas com resposta rápida, estas necessidades são atendidas com modelos de previsão continua, e que utilizam a previsão hidrometeorlógica como dado de entrada. Nesta pesquisa, é proposta uma exploração de recursos matemáticos na modelagem empírica de redes neurais progressivas de múltiplas camadas, abordando-se as dificuldades corriqueiras desta técnica, tais como problemas de convergência, eleição da arquitetura ótima, particionamento da amostra e índices de avaliação da qualidade do modelo. Estas dificuldades são pouco discutidas, ou até mesmo totalmente ignoradas, em grande parte dos trabalhos. A aplicação da metodologia utilizou dados da bacia do rio Quaraí, onde as cidades fronteiriças de Quaraí (Br) e Artigas (Uy) sofrem com inundações ribeirinhas. A área da bacia de contribuição é de 4.500 km², salientando-se que a bacia apresenta uma rápida resposta aos eventos de precipitação, decorrente de uma baixa capacidade de armazenamento e infiltração. O modelo proposto de previsão de níveis por redes neurais tem como entradas, níveis observados nos 2 dias anteriores e previsão numérica de precipitação (ETA-CPTEC) para até 5 dias à frente. O provável ganho em qualidade ao utilizar-se previsão de precipitação no modelo de previsão de nível foi analisado, comparando-se os resultados do modelo completo de redes neurais com os obtidos, também por um modelo de redes neurais, porém, sem o emprego de previsão de precipitação, pois assim, a avaliação deste ganho não tem a influência das características do modelo utilizado. Foi verificado um pequeno ganho ao utilizar-se a previsão de precipitação, mesmo com a baixa capacidade em acertar a magnitude da precipitação. Para efeitos de experimentação da técnica de aglutinação dos índices de qualidade dos resultados da modelagem, foram obtidas e comparadas as previsões de níveis de um modelo de regressão com as de um modelo por redes neurais. Foi analisado o comportamento do índice de erro associado à freqüência de ocorrência, que indica a magnitude do erro de modo absoluto, o qual, devido a seu significado intuitivo, dispensa a comparação com modelos alternativos. A técnica de aglutinação foi importante para a comparação dos resultados das modelagens, tendo indicado a vantagem das redes neurais sobre a regressão. Os recursos desenvolvidos nesta pesquisa, para contornar as dificuldades expostas, podem contribuir para a correta utilização de redes neurais progressivas de múltiplas camadas, em especial na área de recursos hídricos. Observa-se, ainda, que a delimitação dos limites de abrangência da amostra de dados tem uma importante influência na escolha do correto modelo a ser utilizado. / Flood alert systems require appropriate anticipation and accuracy from level forecasting models. Particularly for small basins with quick response these requirements are fulfilled by continuous forecasting models that use rain forecasting data as input. The purpose of this research is an analysis of mathematical resources in the multilayer feedforward neural networks empirical modelling. Usual limitations to adapt these techniques, such as convergence problems, optimum architecture selection, sample partitions and indexes for the models quality evaluation are presented and analyzed. These difficulties are rarely discussed and often disregarded by networks literature. The data employed for the methodology application refers to the Quaraí River basin where the neighboring cities of Quaraí (Brazil) and Artigas (Uruguay) are subjected to river floods. The contribution basin area is 4,500km² and the basin responds quickly to precipitation events since it has low infiltration and storage capacity. The adopted level forecasting model using neural network techniques was applied to two previous observed levels and the rainfall forecasting data (ETA-CPTEC) up to five days ahead as input. The potential gain on quality by using rainfall forecasting on the level forecasting model was analyzed by comparing results from the neural network model using precipitation forecasting with results from the neural network model that did not use it. On this approach the gain valuation isn’t influenced by the models characteristics. A small improvement was obtained by using the rainfall forecasting, even considering the low performance to estimate rainfall values. Level forecasting data generated by a regression model was compared with the level forecasting obtained from the neural network model in order to test the gathering techniques of the models results quality indexes,. The behavior of the error index associated with the frequency index, which indicates the error magnitude in the absolute mode and do not need any further comparisons because of its intuitive meaning, was analysed. The use of gathering techniques was important to compare the model results, indicating an advantage of the neural networks techniques when compared to the regresion model. The resources developed to solve the difficulties found in this research can give indication for the correct use of multi-layer feedforward neural networks, specially when applied to hydraulic resources. It was also observed that the determination of the sample’s valid range can present important role in the choice of the adequate model for use in each case.
|
55 |
Redes de neurônios com interações sinápticas hierárquicasIdiart, Marco Aurelio Pires January 1991 (has links)
Na primeira etapa investigamos detalhadamente as propriedades de armazenamento de um modelo de redes de neurônios que apresenta uma organização em aglomerados semelhante àquela existente no Modelo Hierárquico de Dyson para ferromagnetismo. As memórias, neste modelo, são armazenadas através da Regra de Aprendizagem de Hebb, superposta à estrutura hieráquica. No caso de um número finito de padrões, mostramos que, junto com os padrões originais ou "ancestrais", o sistema é capaz de recuperar uma hierarquia de padrões "descendentes". Estes padrões diferem dos "ancestrais" nos sinais relativos das magnetizações nos diferentes blocos, e o número destas soluções cresce exponencialmente com o número de blocos, n(t) e0451, para grande. Para um número extensivo de padrões armazenados p = aN , onde N é o tamanho do sistema, nós investigamos a capacidade crítica de armazenamento do modelo tanto para "ancestrais" como para "descendentes". Usando dois métodos distintos, uma formulação de mecânica estatística de equilíbrio (campo médio) e uma análise de sinal-ruído, nós obtemos uma sucessão de capacidades de armazenamento que são sempre menores que o valor correspondente ao modelo de Hopfield. Usamos as razões entre estas capacidades e a do modelo de Hopfield para comparar os resultados dos dois métodos. Nós apresentamos o diagrama de fases no plano a — T para o caso especial de dois blocos e um único "descendente". A segunda parte é relacionada com o estudo do espaço de interações dos modelos de redes de neurônios. Neste caso nós buscamos determinar a máxima capacidade crítica de armazenamento para modelos que apresentem, de alguma forma, a mesma estrutura de blocos que discutimos antes. Para ter em conta esta estrutura foi preciso modificar o problema de Gardner. Para o armazenamento de padrões "ancestrais", obtivemos um valor de anc i". sempre menor que 2, o qual corresponde ao caso de modelos sem estrutura predefinida. Este resultado combina com aquele que encontramos anteriormente na análise de sinal-ruído. Por outro lado, mostramos que no caso especial de dois blocos esta estrutura pouco afeta a armazenagem conjunta de "ancestrais" e "descendentes". / In the first part we perform a detailed investigation of the storage properties of a model for neural networks that exhibits the same organization into clusters as Dyson's hierarchical model, for ferromagnetism, combined with Hebb's learning algorithm for p stored patterns. In the case of finite p, we show that together with the original stored patterns or "ancestors" the system retrieves also a hierarchy of "descendants". The "descendants" differ from the "ancestor" in the signs of the cluster overlaps, and the number of this solutions increases exponentially with the cluster number, n(t) ti e"", for large values of t. For an extensive number of stored patterns p = aN , where N is the size of the network, we investigate the criticai storage capacity of the model to both "ancestor" and "descendant" patterns. By using two different methods, a statistical mechanics formulation (mean-field) and a signal-to-noise analysis, we obtain a succession of criticai storage capacities that are below the corresponding value for Hopfield's model. We use the ratio of this criticai storage capacities to the same quantity as evaluated in Hopfield's model to compare the results in both methods. We present the phase diagram in the a — T plane for the particular case of two clusters and one descendant. The second part is related with the study of the space of interactions in neural network models. In this case we search for the maximal criticai storage capacity of models that present, in some sense, the same cluster struture that we discussed before. In order to take this structure in account we redefine the Gardner Program. Concerning the storage of "ancestors" we obtain a value of arx. always lower than 2, which corresponds to the original case of models without structure. This result agrees with that we found before in the signal-to-noise analysis. On the other side we show in the special case of two clusters that this structure barely affects the storage of "ancestors" and "descendants" together.
|
56 |
Navegação exploratória baseada em problemas de valores de contornoSilva Junior, Edson Prestes e January 2003 (has links)
Este trabalho apresenta e discute uma estratégia e discute uma estratégia inédita para o problema de exploração e mapeamento de ambientes desconhecidos usandoo robô NOMAD 200. Esta estratégia tem como base a solução numéricqa de problemas de valores de contorno (PVC) e corresponde ao núcleo da arquitetura de controle do robô. Esta arquitetura é similar à arquitetura blackboard, comumente conhecida no campo da Inteligência Artificial, e é responsável pelo controle e gerenciamento das tarefas realizadas pelo robô através de um programa cleinte. Estas tarefas podem ser a exploração e o mapeamento de um ambiente desconhecido, o planejamento de caminhos baseado em um mapa previamente conhecido ou localização de um objeto no ambiente. Uma características marcante e importante é que embora estas tarefas pareçam diferentes, elas têm em comum o mesmo princípio: solução de problemas de valores de contorno. Para dar sustentabilidade a nossa proposta, a validamos através de inúmeros experimentos, realizados e simulação e diretamente no robô NOMAD 200, em diversos tipos de ambientes internos. Os ambientes testados variam desde labirintos formados por paredes ortogonais entre si até ambientes esparsos. Juntamente com isso, introduzimos ao longo do desenvolvimento desta tese uma série de melhorias que lidam com aspectos relacionados ao tempo de processamento do campo potencial oriundo do PVC e os ruídos inseridos na leitura dos sensores. Além disso, apresentamos um conjunto de idéias para trabalhos futuros.
|
57 |
Classificação de imagens de sensoriamento remoto baseada em textura por redes neuraisBeluco, Adriano January 2002 (has links)
O objetivo principal deste trabalho é propor uma metodologia de classificação de imagens de sensoriamento remoto que integre a importância de atributos de textura na seleção de feições, através da utilização de freqüências espaciais de cada classe textural e sua direção, com a eficiência das redes neurais artificiais para classificá-las. O processo é composto por uma etapa de filtragem baseada nos filtros de Gabor, seguida de uma fase de classificação através de uma rede neural Multi-Layer Perceptron com algoritmo BackPropagation. A partir da transformada de Fourier são estimados os parâmetros a serem utilizados na constituição dos filtros de Gabor, adequados às freqüências espaciais associadas a cada classe presente na imagem a ser classificada. Desta forma, cada filtro gera uma imagem filtrada. O conjunto de filtros determina um conjunto de imagens filtradas (canais texturais). A classificação pixel a pixel é realizada pela rede neural onde cada pixel é definido por um vetor de dimensionalidade igual ao número de filtros do conjunto. O processo de classificação através da rede neural Multi-Layer Perceptron foi realizado pelo método de classificação supervisionada. A metodologia de classificação de imagens de sensoriamento remoto proposta neste trabalho foi testada em imagens sintética e real de dimensões 256 x 256 pixels. A análise dos resultados obtidos é apresentada sob a forma de uma Matriz de Erros, juntamente com a discussão dos mesmos.
|
58 |
Redes neurais aplicadas ao reconhecimento de regiões promotoras na família MycoplasmataceaeValiati, Joao Francisco January 2006 (has links)
Este trabalho apresenta o estudo, investigação e realização de experimentos práticos, empregados na resolução do problema de reconhecimento de regiões promotoras em organismos da família Mycoplasmataceae. A partir disso, é proposta uma metodologia para a solução deste problema baseada nas Redes Neurais Artificiais. Os promotores são considerados trechos de uma seqüência de DNA que antecedem um gene, podem ser tratados como marcadores de uma seqüência de letras que sinalizam a uma determinada enzima um ponto de ligação. A posição onde se situa o promotor antecede o ponto de início do processo de transcrição, onde uma seqüência de DNA é transformada em um RNA mensageiro e, este potencialmente, em uma proteína. As Redes Neurais Artificiais representam modelos computacionais, inspirados no funcionamento de neurônios biológicos, empregadas com sucesso como classificadores de padrões. O funcionamento básico das Redes Neurais está ligado ao ajuste de parâmetros que descrevem um modelo representacional. Uma revisão bibliográfica de trabalhos relacionados, que empregam a metodologia de Redes Neurais ao problema proposto, demonstrou a sua viabilidade. Entretanto, os dados relativos à família Mycoplasmataceae apresentam determinadas particularidades de difícil compreensão e caracterização, num espaço restrito de amostras comprovadas. Desta forma, esta tese relata vários experimentos desenvolvidos, que buscam estratégias para explorar o conteúdo de seqüências de DNA, relativas à presença de promotores. O texto apresenta a discussão de seis experimentos e a contribuição de cada um para consolidação de um framework que agrega soluções robustas consideradas adequadas à solução do problema em questão.
|
59 |
Abordagens de sistemas inteligentes para a solução do problema de despacho econômico de geraçãoTakahashi, Letícia [UNESP] 16 April 2004 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:47Z (GMT). No. of bitstreams: 0
Previous issue date: 2004-04-16Bitstream added on 2014-06-13T18:52:40Z : No. of bitstreams: 1
takahashi_l_me_bauru.pdf: 1226517 bytes, checksum: 79773d4c627eaab79ac4319f0121ae0b (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O presente trabalho desenvolve duas abordagens baseadas em sistemas inteligentes, redes neurais artificiais e algoritmos genéticos, para resolver problemas de Despacho Econômico (DE) com a incorporação das características não lineares e pontos de válvula na função custo das unidades geradoras em sistemas de geração. Os algoritmos de otimização convencionais têm apresentado problemas para resolver o DE nos casos em que as funções envolvidas apresentam características de não convexidade e/ou não diferenciabilidade. As abordagens neurais, mas especificamente a rede de Hopfield, mostram-se como ferramentas adequadas no estudo do DE quando funções objetivo não convexas são estudadas. Na Rede de Hopfield Modificada (RHM) aqui analisada, alguns problemas rotineiramente encontrados em outras abordagens neurais, tais como soluções infactíveis e a não convergência aos pontos de equilíbrio (que representam uma solução para o sistema), são tratados de forma eficiente... / The present work develops two intelligent system approaches: artificial neural networks and genetica algorithms to solving economic dispatch (DE) problems in which the valve point loading is introduced in the cost function analysis. Conventional optimization algorithms have presented some drawbacks when solving certain DE problems presenting non-convexity or non-differentiability issues. The neural approaches, specially the Hopfield network, have proven its efficiency as good tools for solving the DE when such problem presents non-convex objective functions. In the Modified Hopfield network (RHM) studied in this work some problems being highlighted in the literature, such as infeasible solutions or bad convergence rates to the equilibrium points, have been effectively handled. The RHM has also presented a good convergence rate when compared to other neural approaches, which, in general, take thousands of iteration to reach the solution. The Genetic Algorithms (GA) have proven to be suitable for solving optimization presenting non-linear and non-differentiable cost functions. Thus, the genetic... (Complete abstract click electronic access below)
|
60 |
Abordagens de sistemas inteligentes para a solução do problema de despacho econômico de geração /Takahashi, Letícia. January 2004 (has links)
Resumo: O presente trabalho desenvolve duas abordagens baseadas em sistemas inteligentes, redes neurais artificiais e algoritmos genéticos, para resolver problemas de Despacho Econômico (DE) com a incorporação das características não lineares e pontos de válvula na função custo das unidades geradoras em sistemas de geração. Os algoritmos de otimização convencionais têm apresentado problemas para resolver o DE nos casos em que as funções envolvidas apresentam características de não convexidade e/ou não diferenciabilidade. As abordagens neurais, mas especificamente a rede de Hopfield, mostram-se como ferramentas adequadas no estudo do DE quando funções objetivo não convexas são estudadas. Na Rede de Hopfield Modificada (RHM) aqui analisada, alguns problemas rotineiramente encontrados em outras abordagens neurais, tais como soluções infactíveis e a não convergência aos pontos de equilíbrio (que representam uma solução para o sistema), são tratados de forma eficiente... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The present work develops two intelligent system approaches: artificial neural networks and genetica algorithms to solving economic dispatch (DE) problems in which the valve point loading is introduced in the cost function analysis. Conventional optimization algorithms have presented some drawbacks when solving certain DE problems presenting non-convexity or non-differentiability issues. The neural approaches, specially the Hopfield network, have proven its efficiency as good tools for solving the DE when such problem presents non-convex objective functions. In the Modified Hopfield network (RHM) studied in this work some problems being highlighted in the literature, such as infeasible solutions or bad convergence rates to the equilibrium points, have been effectively handled. The RHM has also presented a good convergence rate when compared to other neural approaches, which, in general, take thousands of iteration to reach the solution. The Genetic Algorithms (GA) have proven to be suitable for solving optimization presenting non-linear and non-differentiable cost functions. Thus, the genetic... (Complete abstract click electronic access below) / Orientador: Ivan Nunes da Silva / Coorientador: Leonardo Nepomuceno / Banca: Geraldo Roberto Martins da Costa / Banca: Takaaki Ohishi / Mestre
|
Page generated in 0.0784 seconds