Spelling suggestions: "subject:"redes neurais artificial"" "subject:"aedes neurais artificial""
141 |
Inferências geográficas e redes neurais artificiais aplicadas à produção da cartografia de síntese / Geographic inferences and artificial neural networks applied to the production of cartography synthesisMartines, Marcos Roberto 27 January 2011 (has links)
Este trabalho está inserido com contexto da modelagem cartográfica e cartografia de síntese dentro do universo dos sistemas de informações geográficas (SIG). Serão apresentadas três metodologias distintas para obtenção de mapas sínteses através de inferências geográficas, são elas: Operações Pontuais de Soma (OPS), Processo Analitico hierarquico (AHP) e Redes Neurais Artificais (RNA). Aqui serão desenvolvidos e apresentados todos os procedimentos técnicos e metodológicos para a obtenção desses produtos cartográficos através do uso de dois softwares: o SPRING (SIG) e o SNNS (simulador de rede neural artificial). Também será apresentada uma discussão sobre a qualidade dos modelos gerados por essas distintas metodologias e a importância do papel do pesquisador na obtenção desses produtos. / This work is inserted in the context of cartographic modeling and mapping of synthesis within the universe of geographic information systems (GIS). We will present three different methodologies for obtaining maps synthesis by geographic inferences, they are: Operations Locations Sum, Analytic Hierarchy Process and Artificial Neural Network. Here will be developed and presented all the technical and methodological procedures to obtain these cartographic products through the use of two software: SPRING (GIS) and SNNS (artificial neural network simulator). It will also be a discussion of the quality of models generated by these different methodologies and the importance of the researcher in obtaining these products
|
142 |
Sensoriamento de misturas de H₂, CH₄ e CO por meio de uma matriz de quimioresistores. / Sensing mixtures of H₂, CH₄ and CO through an array of chemiresistors.Moreira, Raphael Garcia 20 February 2014 (has links)
A determinação de cada espécie que compõe uma mistura gasosa tem sido alvo de muitas pesquisas. Existem equipamentos para tal finalidade tais como, cromatografia gasosa, espectroscopia de infravermelho e sensores. A fim de viabilizar uma aplicação de baixo custo para a determinação da concentração de espécies em uma mistura gasosa, neste trabalho, é proposto um aparato para sensoriamento de H₂, CH₄ e CO encontrados em gases combustíveis. O sensoriamento é efetuado por quimioresistores de SnO₂ comercialmente disponíveis. O aparato consiste de um sistema de coleta da mistura gasosa e de sua diluição antes de seguir com a análise feita pelos sensores, obedecendo aos requisitos de segurança contra explosões. O aparato foi submetido a 125 diferentes misturas oriundas da combinação das concentrações de 0, 200, 800, 1500 e 2000 ppm de cada espécie gasosa utilizando o nitrogênio (99,999%) como gás de arraste. As amostragens foram avaliadas sob dois diferentes métodos de recuperação dos sensores: forçado e natural. Através dos resultados experimentais obtidos, foi observado que: a sensibilidade cruzada dos sensores de CO e de CH₄ é bastante elevada enquanto que o sensor de H₂ apresentou maior seletividade e, o método de recuperação natural apresentou melhores resultados em função da estabilidade térmica do sistema. Uma rede neural artificial foi desenvolvida e treinada com o objetivo de superar o problema das sensibilidades cruzadas. Os resultados obtidos pela rede neural são promissores e apresentaram erro máximo de 0,1 % para o hidrogênio, 23% para o metano e 29% para o monóxido de carbono para a obtenção da concentração absoluta de H₂, CH₄ e CO encontrados em misturas com composições conhecidas de antemão. / The achievement of the content of each component of a gas mixture from gasifiers has been a matter of several studies. There are specific techniques for this purpose, such as: gas chromatography, infrared spectroscopy and sensors. In order to allow a low cost application for obtaining the concentrations in a gas mixture, this study proposes a set up for sensing H₂, CH₄ and CO found in fuel gases produced by gasifiers. The sensing is performed by commercially available chemiresistors of SnO₂. The proposed set up collects the gas mixture and dilutes it before proceeding the sensing step, based on the safety requirements to avoid explosion. 125 different gas mixtures were prepared from the combination of 0, 200, 800, 1500 and 2000 ppm of H₂, CH₄ and CO using nitrogen (99.999%) as the carrier gas. The samples were evaluated under two different methods for sensor recovery: forced and natural. Based on the results, it was established that: the cross sensitivity of the CO and CH₄ sensors is too high while the H₂ sensor presents higher selectivity (almost 100%) and the natural recovery method showed improved results because of the better thermal stability of the system. An artificial neural network was developed and trained with the purpose of overcoming the problem of cross sensitivities. The results achieved by means of the neural network are promising and indicated a maximum error of 0.1% for hydrogen, 23% for methane and 29% for carbon monoxide when the absolute concentration of H₂, CH₄ and CO found in the gas mixtures are obtained from well known compositions.
|
143 |
A utilização de redes neurais artificiais em um sistema de gerência de pavimentos / Use of artificial neural networks in a management pavement systemBrega, José Remo Ferreira 17 February 1997 (has links)
Esta tese apresenta o estudo para utilização de Redes Neurais Artificiais para avaliar o estado do pavimento e apoiar as decisões dentro de um Sistema de Gerência de Pavimentos. É apresentado um método para a avaliação da condição em pavimentos flexíveis, utilizando redes neurais MLP backpropagation. Neste caso para a extração das características dos pavimentos são utilizados dois métodos muito empregados pelos órgãos rodoviários: o \"Índice de Gravidade Global\" e a \"irregularidade\". Os experimentos demonstraram que as redes neurais simulam satisfatoriamente o estado dos pavimentos. Para se verificar a possibilidade de utilização em outros problemas, o processo foi empregado para o projeto de restauração de pavimentos flexíveis. Foi utilizada a DNER-PRO 159/85 para a extração das características dos pavimentos. Os experimentos demonstraram que as redes neurais também simulam convenientemente as características do pavimento. Como exemplo de ferramenta de apoio à gerência foi desenvolvido um protótipo computacional em ambiente gráfico, onde o critério de decisão baseia-se nas redes neurais estudadas. São descritas todas as suas funções e forma de funcionamento. / A study of artificial neural networks for evaluating the pavement condition and for supporting decisions within a Pavement Management System is presented. The method for condition evaluation of flexible pavements using the MLP backpropagation technique is described. Two of the most used procedures for detecting the pavement conditions were applied: the \"overall severity index\" (Brazilian IGG) and the \"irregularity index\". The experiments demonstrated that the neural networks satisfactorily simulated the state of the pavement. In order to test the applications in other problems, the method was used for pavement overlay design through neural network, using the same MLP backpropagation technique. For detecting the pavement conditions the DNER-PRO 159/85 was applied. Tests with the model also demonstrated that the neural networks appropriately simulate the pavement characteristics. A computational prototype developed in a graphical computer environment, where the decision criteria are based on the neural networks studied, is presented as an example. All the functions and working details of such prototype are described.
|
144 |
Extração de conhecimento de redes neurais artificiais. / Knowledge extraction from artificial neural networks.Martineli, Edmar 20 August 1999 (has links)
Este trabalho descreve experimentos realizados com Redes Neurais Artificiais e algoritmos de aprendizado simbólico. Também são investigados dois algoritmos de extração de conhecimento de Redes Neurais Artificiais. Esses experimentos são realizados com três bases de dados com o objetivo de comparar os desempenhos obtidos. As bases de dados utilizadas neste trabalho são: dados de falência de bancos brasileiros, dados do jogo da velha e dados de análise de crédito. São aplicadas sobre os dados três técnicas para melhoria de seus desempenhos. Essas técnicas são: partição pela menor classe, acréscimo de ruído nos exemplos da menor classe e seleção de atributos mais relevantes. Além da análise do desempenho obtido, também é feita uma análise da dificuldade de compreensão do conhecimento extraído por cada método em cada uma das bases de dados. / This work describes experiments carried out witch Artificial Neural Networks and symbolic learning algorithms. Two algorithms for knowledge extraction from Artificial Neural Networks are also investigates. This experiments are performed whit three data set with the objective of compare the performance obtained. The data set used in this work are: Brazilians banks bankruptcy data set, tic-tac-toe data set and credit analysis data set. Three techniques for data set performance improvements are investigates. These techniques are: partition for the smallest class, noise increment in the examples of the smallest class and selection of more important attributes. Besides the analysis of the performance obtained, an analysis of the understanding difficulty of the knowledge extracted by each method in each data bases is made.
|
145 |
Combinação de Classificadores para Reconhecimento de Padrões / Not availablePrampero, Paulo Sérgio 16 March 1998 (has links)
O cérebro humano é formado por um conjunto de neurônios de diferentes tipos, cada um com sua especialidade. A combinação destes diferentes tipos de neurônios é um dos aspectos responsáveis pelo desempenho apresentado pelo cérebro na realização de várias tarefas. Redes Neurais Artificiais são técnicas computacionais que apresentam um modelo matemático inspirado no sistema nervoso e que adquirem conhecimento através da experiência. Uma alternativa para melhorar o desempenho das Redes Neurais Artificiais é a utilização de técnicas de Combinação de Classificadores. Estas técnicas de combinação exploram as diferenças e as semelhanças das redes para a obtenção de resultados melhores. Dentre as principais aplicações de Redes Neurais Artificiais está o Reconhecimento de Padrões. Neste trabalho, foram utilizadas técnicas de Combinação de Classificadores para a combinação de Redes Neurais Artificiais em problemas de Reconhecimento de Padrões. / The human brain is formed by neurons of different types, each one with its own speciality. The combination of theses different types of neurons is one of the main features responsible for the brain performance in severa! tasks. Artificial Neural Networks are computation technics whose mathematical model is based on the nervous system and learns new knowledge by experience. An alternative to improve the performance of Artificial Neural Networks is the employment of Classifiers Combination techniques. These techniques of combination explore the difference and the similarity of the networks to achieve better performance. The main application of Artificial Neural Networks is Pattern Recognition. In this work, Classifiers Combination techniques were utilized to combine Artificial Neural Networks to solve Pattern Recognition problems.
|
146 |
Utilização de processamento de imagens em aplicações da aerodinâmica / Utilization of images processing in aerodynamics applicationBueno, Samuel Corrêa 16 October 1998 (has links)
Neste trabalho apresentamos o desenvolvimento e a realização de um experimento utilizando recursos modernos de processamento de imagens como câmeras CCD, placas de aquisição de imagens e linguagem de programação visual com interface multimídia para observação do fenômeno do Estol dinâmico que tem grande importância do estudo de estabilidade de aeronaves. O fenômeno de Estol ocorre nos aerofólios de aeronaves como nos rotores de helicópteros e asas de aeronaves acrobáticas. Nosso sistema e capaz de detectar dentro de um experimento de um aerofólio oscilando em baixas freqüências a Histerese de sustentação que ocorre neste. Utilizamos também na nossa abordagem redes neurais backpropagation para acomodação dos dados experimentais. Implementamos e descrevemos um hardware mecânico para obtenção de melhores imagens e as funções escritas em Visual Basic que foram utilizadas, com o objetivo de permitir a reprodução do experimento em outros centros de pesquisa. / In this work we present an experiment using modern imaging processing techniques such as CCD cameras, video acquisition boards and visual programming using multimedia interfacing for the observation of the Stall phenomena which has great importance in the airplane stability. The Stall phenomena occurs in arplaine (airfoils) such as in helicopter blades and acrobatic airplane wings. We demonstrated that the developed system is able to detect the lift histeresis in a low frequency oscillating bidimensional airfoil. We also used in our approach backpropagation neural network for the experimental data accomodation. In order to allow replication of the experiment by other institutions, we present a detailed description of the mechanical setup used to obtain the best possible images and of the Visual Basic functions.
|
147 |
[en] AUTOMATIC ANALISYS OF ELECTROCARDIOGRAPHIC SIGNALS USING ARTIFICIAL NEURAL NETWORKS / [pt] ANÁLISE AUTOMÁTICA DE SINAIS ELETROCARDIOGRÁFICOS POR REDES NEURAIS ARTIFICIAISALEXANDRE STURMER WOLF 19 April 2004 (has links)
[pt] O objetivo dessa dissertação é o desenvolvimento de um algoritmo para a análise automática de sinais
eletrocardiográficos, baseado em Redes Neurais Artificiais. O sistema é dividido em vários sub-
programas utilizados para extrair informações do registro eletrocardiográfico de pacientes, informando a
existência de anormalidades a partir da comparação dos valores obtidos com os valores de normalidade
disponíveis na literatura biomédica. O programa utiliza 4 segundos do sinal de eletrocardiograma
para uma análise classificatória inicial, verificando a viabilidade da extração de informações. Sendo possível esta extração, são obtidos os ciclos cardíacos existentes nesse sinal, e deles são extraídas informações quantitativas dos componentes de suas ondas, que posteriormente serão comparadas com faixas de normalidade por meio de um conjunto de regras heurísticas, indicando assim a possível presença de alterações morfológicas do registro. Esse programa pode ser utilizado em comunidades carentes para orientar a necessidade de encaminhamento a um especialista, cuja presença é rara na maior parte dos postos de atendimento generalista. Também pode auxiliar ao médico especialista, indicando de forma objetiva as possíveis alterações do registro eletrocardiográfico. Os resultados obtidos podem ser considerados satisfatórios, sendo que os valores são compatíveis com a sua natureza,
principalmente no que diz respeito aos problemas de baixa razão sinal/ruído existente nos sinais analisados. Para verificação dos resultados de localização dos pontos inicial e final de cada componente do ECG, uma das métricas utilizadas foi o MAPE, obtendo-se, 19,44 por cento para onda P,4,85 por cento para o complexo QRS, 8,93 por cento para o início da onda T e 7,76 por cento para o final da onda T. Outra métrica utilizada para comparar os resultados obtidos com outro artigo, foi a Média Aritmética/Desvio Padrão, onde se obteve mi=-0,8264 ms e sigma=3,7037 ms para o início da onda P, mi=-1,5082 ms e sigma=2,2890 ms para o fim da onda P, mi=-0,2104 ms e sigma=3,2486 ms para o
início do complexo QRS, mi=-0,4309 ms e sigma=3,9542 ms para o fim do complexo QRS, mi=-0,1926 ms e sigma=5,7413 ms para o início da onda T, mi=-0,3346 ms e sigma=6,3991 ms para o fim da onda T. / [en] The objective of this dissertation is implementing an algorithm for automatic analysis of electrocardiographic signals, using Artificial Neural Networks. The system is divided into several subprograms that extract relevant information about the cardiac signal measured from patients, and points out possible abnormalities by comparison with normal values found in biomedical bibliography. The algorithm uses 4 seconds of the electrocardiogram signal for an initial classification, verifying the feasibility of information extraction. If the extraction is possible, the separate cardiac cycles are collected from the signal and quantitative values for the various components are determined. Finally,
these values are compared with the normal values, indicating alterations of wave morphology. This
algorithm has a clear relevance in low-income communities, being useful for an initial classification
of the patients, being then forwarded to a cardiologist when ECG abnormalities are identified. Another potential use is in helping the cardiologist to automatically determine accurate values from the electrocardiographic register. The results can by considered satistactory, because the values are being compatible with their nature, mainly due to problems of low signal-to-noise ratio in analysed signals. For verification of the results, one metric used was the MAPE, obtaining 19,44 percent for the P wave, 4,85 percent for the QRS complex, 8,93 percent for the begining of the T wave and 7,76 percent for the end of T wave. Another metric used for comparing results with another article, was the Arithmetic Mean/Standard Deviation, obtaining u=-0,8264 ms and ó=3,7037 ms for the onset of the P wave, u=-1,5082 ms and ó=2,2890 ms for the offset of P wave, u=-0,2104 ms and ó=3,2486 ms for the onset of the QRS complex, u=-0,4309 ms and ó=3,9542 ms for the offset of the QRS complex, u=-0,1926 ms and ó=5,7413 ms for the onset of the T wave, u=-0,3346 ms and ó=6,3991 ms for the offset of the T wave.
|
148 |
Detecção de adulteração de combustíveis com sensores poliméricos eletrodepositados e redes neurais artificiais. / Fuel adulteration detection using electrodepositated polymer sensors and artificial neural networks.Ozaki, Sérgio Tonzar Ristori 11 June 2010 (has links)
A adulteração de combustíveis é uma grande preocupação no Brasil. A agência reguladora nacional (ANP) detecta anualmente de 1 a 3% de adulterações nas amostras coletadas, o que é um índice alto considerando o tamanho do mercado brasileiro. As alternativas de adulteração são vastas e muito dinâmicas, por isso os arranjos de sensores baseados no conceito de seletividade global parecem os mais adequados para detectar falsificação de combustíveis. O conceito de seletividade global leva em conta a sensibilidade cruzada de sensores químicos não específicos e o uso de métodos de análise multivariada de dados para encontrar padrões para amostras de diferentes composições químicas. Os sensores químicos podem ser obtidos de uma variedade de materiais sensoativos, cujas respostas elétricas variam de acordo com as propriedades físico-químicas do meio em que se encontra. Os polímeros condutores são excelentes materiais sensoativos, pois sua condutividade elétrica é grandemente influenciada pelas condições ambientais e podem ser processados na forma de filmes finos através várias técnicas. No presente trabalho, filmes de poli(3-metiltiofeno) (PMTh) e poli(3-hexiltiofeno) são depositados por cronopotenciometria e cronoamperometria sobre microeletrodos interdigitados e são caracterizados por espectroscopia de impedância. Os dados são analisados por redes neurais artificiais do tipo multilayer perceptron e bons resultados são obtidos na detecção de adulteração de gasolina. O mesmo estudo também pode ser aplicado na detecção de adulteração de álcool etílico combustível com um desempenho um pouco pior. / Fuel adulteration is a major concern in Brazil. The local governmental agency detects from 1 to 3% of problematic samples yearly, which is a lot considering Brazils market size. The myriad of adulteration possibilities is vast and it is very dynamic, thus array of sensors based on global selectivity concept seems to be more suitable methodology to detect problems in fuel. The global selectivity concept encompasses the cross-sensitivity of non-specific chemical sensors and the use of multivariated data analysis methods as a way to provide fingerprints for samples of different chemical composition. The chemical sensors can employ different types of sensoactive materials, whose electrical responses are dependent on the physicochemical characteristics of the media they get in contact with. Conducting polymers (CP) are per excellence suitable sensoactive materials, since their electrical conductivity is highly influenced by the environmental conditions and they can be easily processed in the thin film form by different techniques. In the present work films of poly(3-methylthiophene) (PMTh) and poly(3-hexylthiophene) (PHTh) are deposited by chronopotenciometry and chronoamperometry onto interdigitated microelectrodes and characterized through Impedance Spectroscopy. This data was analyzed with Multilayer perceptron neural networks and a very good performance is found in gasoline adulteration detection. A less great performance was also achieved in the investigation vehicular ethanol adulteration.
|
149 |
Procedimentos para tornar mais efetivo o uso das redes neurais artificiais em planejamento de transportes. / Alternative procedures to make more effective the application artificial neural network in transportation planning.Bocanegra, Charlie Williams Rengifo 05 February 2002 (has links)
O objetivo deste trabalho é explorar procedimentos alternativos capazes de tornar mais efetiva a aplicação, em planejamento de transportes, de modelos desenvolvidos através de redes neurais artificiais (RNA). Pensar, do ponto de vista prático, que um programa de computador seja imprescindível para a fase de treinamento da rede é aceitável, mas depender deste programa também para estimativas e simulações a partir da rede treinada é muito restritivo. Desta forma, o ideal seria obter instrumentos capazes de reproduzir, fora do software de RNA, o comportamento de redes treinadas, integrando a capacidade de predição das RNAs a outros ambientes e ferramentas. Isto ampliaria os recursos de diferentes ferramentas de planejamento, permitindo, por exemplo, análises de sensibilidade mais simples e diretas. Este trabalho será baseado em um modelo já desenvolvido em outra pesquisa, na qual se treinou uma rede neural artificial para estimar um índice de potencial de viagens para planejamento estratégico de transportes. Trata-se de um caso típico em que, embora a rede treinada conduza a estimativas razoáveis de número de viagens por domicílio a partir de variáveis que caracterizam a mobilidade e a acessibilidade, não se pode realizar outras análises a partir dos resultados sem fazer uso do software em que a rede neural artificial foi treinada e obviamente do arquivo com a rede já treinada. Daí a importância de desenvolver alternativas capazes de tornar mais efetivo o uso desse tipo de modelo. Dentre as alternativas aqui exploradas está a reprodução do modelo de RNA em uma planilha eletrônica, o desenvolvimento de um programa em visual basic, a construção de ábacos e a integração, de forma direta, do modelo de RNA a um sistema de informações geográficas (SIG). Para esse último caso, o modelo em ambiente SIG foi utilizado em uma aplicação na cidade de Bauru, a partir de dados agregados em zonas, onde se simulou alterações nos valores das variáveis de entrada, de forma a avaliar o seu impacto sobre as viagens estimadas em diferentes regiões da cidade. Todas as alternativas exploradas ilustram bem a ampliação das possibilidades de realização de análises de sensibilidade com os modelos de RNA, sobretudo quando combinados com os SIG, particularmente quando a localização dos valores estimados como saída é importante no contexto de análise e tomada de decisão. É importante destacar ainda que, além de permitir a condução de análises de sensibilidade, as alternativas apresentadas neste estudo podem, de certa forma, ajudar aos planejadores e tomadores de decisão a entender a lógica do modelo. / The objective of this work is to explore alternative procedures to make more effective the application of ANN (artificial neural network) models in transportation planning. While the use of a specific computer program for training the networks is acceptable, the requirement of the same dedicated software also for predictions and simulations using the trained network is very restrictive from a practical point of view. An alternative to tackle this problem would be to reproduce the behavior of the trained ANN models out the training package through the integration of their estimation capabilities to other tools and environments. This could extend the resources of different planning tools, allowing, for instance, simpler and direct sensitivity analyses. The present study is based on a model developed in previous research work, in which a particular ANN model has been developed to estimate a Trip Potential Index for transportation planning at a strategic level. This is a typical example of a model able to produce acceptable trip number estimations based on input variables associated to mobility and accessibility. Any further analyses, however, are usually dependent on the use of the same package used for training the network and the file with the trained network. This stresses the importance of developing alternatives to make more effective the use of this sort of model. Among the alternatives explored in this work are: the use of electronic spreadsheets, a computer program written in visual basic, graphs, and the direct integration of the ANN model into a geographic information system (GIS) commercial package. In the last case, the model in a GIS-environment has been used to run an application in the city of Bauru. Using data aggregated at the zonal level, changes in the input variables have been simulated in order to evaluate their impact on the trips estimated for different city regions. All alternatives explored here demonstrate the possibilities offered by the ANN models for sensitivity analyses. This is even more evident in the case of ANN models combined with GIS, particularly when the location of the predicted values is a relevant element in the analysis or decision making context. In addition, the procedures presented here may somehow help planners and decisionmakers in understanding the logic behind the models.
|
150 |
Análise por meio de redes neurais artificiais dos dados do monitoramento dos piezômetros da barragem de concreto de Itaipu / Evaluation with Artificial Neural Networks of the monitoring data of the piezometers of Itaipu concrete damMedeiros, Bruno 19 December 2013 (has links)
A Barragem de Itaipu é uma obra de engenharia de grande importância. Localizada na fronteira entre o Brasil e o Paraguai no Rio Paraná e com coordenadas geográficas aproximadas 25°24\'29\"S, 54°35\'21\"O, ela fornece energia elétrica a estes dois países e deve ser constantemente monitorada de modo a manter níveis de qualidade e segurança. Mais de dois mil instrumentos foram instalados e fornecem dados contínuos sobre diversas características da fundação e estrutura da barragem, incluindo mais de 650 piezômetros. A avaliação de níveis piezométricos em barragens é importante, pois refletem os valores de subpressão que atuam na estrutura da barragem. A utilização de novos métodos em tais análises pode permitir agilidade na tomada de decisões por parte da equipe de segurança de barragens. Dependendo do método aplicado, uma melhor compreensão do fenômeno no tempo e espaço pode ser obtida. Este estudo aplica Redes Neurais Artificiais (RNA) para simular o comportamento dos piezômetros instalados em uma descontinuidade geológica na fundação da Barragem de Itaipu. Ele considera diferentes tipos de dados de entrada em uma Rede Neural Multicamadas e determina a melhor arquitetura de RNA que mais se aproxima da situação real. / Itaipu Dam is an engineering work of high importance. Located at the border between Brazil and Paraguay in the Paraná River and with approximated geographical coordinates 25°24\'29\"S, 54°35\'21\"W, it provides electrical energy to these two countries and has to be constantly monitored in order to maintain its levels of quality and security. Over two thousand instruments have been installed and they provide continuous data about several characteristics of the dam foundation and structure, including more than 650 piezometers. The evaluation of piezometric levels in dams is important for it reflects the values of the uplift pressure that acts on the structure of the dam. The utilization of new methods in such an analysis can provide agility to decisions-taking by the security team of the dam. Depending on the method applied, a better comprehension of the phenomenon in time and space may be achieved. This study employs Artificial Neural Networks (ANN) to simulate the behavior of the piezometers installed in a geological discontinuity in the foundation of Itaipu Dam. It considers different types of entry data in a Multilayer Neural Network and determines the best ANN architecture that is closest to the real situation.
|
Page generated in 0.075 seconds