• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 772
  • 11
  • 8
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 795
  • 795
  • 795
  • 551
  • 527
  • 460
  • 132
  • 121
  • 117
  • 107
  • 93
  • 69
  • 59
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Identificação de falhas em motores de indução trifásicos usando sistemas inteligentes / Identification of faults in three-phase induction motors using intelligent systems

Santos, Fernanda Maria da Cunha 14 March 2013 (has links)
Esta tese consiste em desenvolver um sistema de identificação e classificação de falhas em motores de indução trifásico. As falhas analisadas foram simuladas em laboratório e envolvem problemas elétricos, como curto-circuito no estator, e problemas mecânicos, como barras quebradas no rotor. O sistema computacional proposto é formado pela transformada discreta wavelet, pelo cálculo de variáveis estatísticas e por redes neurais artificiais. A partir dos sinais elétricos da corrente do estator, a transformada wavelet produz os coeficientes característicos das falhas, os quais são usados no cálculo das variáveis estatísticas, como a média, root mean square, skewness e kurtosis. Estes valores são transmitidos como dados de entrada para as redes neurais que identificam as falhas e classificam a natureza das mesmas. Por fim, resultados obtidos visam validar a metodologia sugerida, que buscou nos sistemas inteligentes soluções eficazes para diagnosticar falhas em máquinas elétricas. / This thesis consists in developing a system for the identification and classification of faults in three-phase electric motors. The faults were analyzed and simulated in the laboratory and involve electrical problems, such as short circuit in the stator, and mechanical problems, such as broken rotor bars. The proposed computer system is formed by discrete wavelet transform, by calculation of statistical variables and for artificial neural networks. From the electrical signals of the stator current, the wavelet transform produces characteristic coefficients of faults, which are extracted by calculating of statistics variables, such as mean, root mean square, skewness and kurtosis. These values are passed as input to the neural networks that identify faults and the severity of it. Finally, results aimed at validating the methodology suggested that sought effective solutions in intelligent systems to diagnose faults in electrical machines.
532

Estimador neuro-fuzzy de velocidade aplicado ao controle vetorial sem sensores de motores de indução trifásicos. / Neuro-fuzzy speed estimator applied to sensorless induction motor drives.

Lima, Fábio 05 July 2010 (has links)
Este trabalho apresenta uma alternativa ao controle vetorial de motores de indução, sem a utilização de sensores para realimentação da velocidade mecânica do motor. Ao longo do tempo, diversas técnicas de controle vetorial têm sido propostas na literatura. Dentre elas está a técnica de controle por orientação de campo (FOC), muito utilizada na indústria e presente também neste trabalho. A principal desvantagem do FOC é a sua grande sensibilidade às variações paramétricas da máquina, as quais podem invalidar o modelo e as ações de controle. Nesse sentido, uma estimativa correta dos parâmetros da máquina, torna-se fundamental para o acionamento. Este trabalho propõe o desenvolvimento e implementação de um estimador baseado em um sistema de inferência neuro-fuzzy adaptativo (ANFIS) para o controle de velocidade do motor de indução trifásico em um acionamento sem sensores. Pelo fato do acionamento em malha fechada admitir diversas velocidades de regime estacionário para o motor, uma nova metodologia de treinamento por partição de frequência é proposta. Ainda, faz-se a validação do sistema utilizando a orientação de campo magnético no referencial de campo de entreferro da máquina. Simulações para avaliação do desempenho do estimador mediante o acionamento vetorial do motor foram realizadas utilizando o programa Matlab/Simulink. Para a validação prática do modelo, uma bancada de testes foi implementada; o acionamento do motor foi realizado por um inversor de frequência do tipo fonte de tensão (VSI) e o controle vetorial, incluindo o estimador neuro-fuzzy, foi realizado pelo pacote de tempo real do programa Matlab/Simulink, juntamente com uma placa de aquisição de dados da National Instruments. / This work presents an alternative sensorless vector control of induction motors. Several techniques for induction motor control have been proposed in the literature. Among these is the field oriented control (FOC), strongly used in industries and also in this work. The main drawback of the FOC technique is its sensibility to deviations of the parameters of the machine, which can deteriorate the control actions. Therefore, an accurate determination of the machines parameters is mandatory to the drive system. This work proposes the development of an adaptive neuro-fuzzy inference system (ANFIS) estimator to control the angular speed of a three-phase induction motor in a sensorless drive. In a closed loop configuration, several speed commands can be imposed to the motor. Thus, a new frequency partition training of ANFIS is proposed. Moreover, the ANFIS speed estimator is validated in a magnetizing flux oriented control scheme. Simulations to evaluate the performance of the estimator considering the vector drive system were done by the Matlab/Simulink. To determine the benefits of the proposed model a practical system was implemented using a voltage source inverter (VSI) and the vector control including the ANFIS estimator, carried out by the Real Time Toolbox from Matlab/Simulink and a data acquisition card from National Instruments.
533

Usando o Sistema de Inferência Neuro Fuzzy - ANFIS para o cálculo da cinemática inversa de um manipulador de 5 DOF /

Spacca, Jordy Luiz Cerminaro January 2019 (has links)
Orientador: Suely Cunha Amaro Mantovani / Resumo: No estudo dos manipuladores são utilizados os conceitos da cinemática direta e a inversa. No cálculo da cinemática direta tem-se a facilidade da notação de Denavit-Hartenberg, mas o desafio maior é a resolução da cinemática inversa, que se torna mais complexa conforme aumentam os graus de liberdade do manipulador, além de apresentar múltiplas soluções. As variáveis angulares obtidas pelas equações da cinemática inversa são utilizadas pelo controlador, para posicionar o órgão terminal do manipulador em um ponto específico de seu volume de trabalho. Na busca de alternativas para contornar estes problemas, neste trabalho utilizam-se os Modelos Adaptativos de Inferência Neuro-Fuzzy - ANFIS para a resolução da cinemática inversa, por meio de simulações, para obter o posicionamento de um manipulador robótico de 5 graus de liberdade, composto por sete servomotores controlados pela plataforma de desenvolvimento Intel® Galileo Gen 2, usado como caso de estudo. Nas simulações usamse ANFIS com uma arquitetura com três e quatro funções de pertinência de entrada, do tipo gaussiana. O desempenho da arquitetura da ANFIS implementada foi comparado com uma Rede Perceptron Multicamadas, demonstrando com os resultados favoráveis a ANFIS, a sua capacidade de aprender e resolver com baixo erro quadrático médio e com precisão, a cinemática inversa para o manipulador em estudo. Verifica-se também, que a performance das ANFIS melhora, quanto à precisão dos resultados, demonstrado pelo desvio médio d... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In the study of manipulator’s, the concepts of direct and inverse kinematics are used. In the computation of forward kinematics, it has of the ease of Denavit-Hartenberg notation, but the biggest challenge is the resolution of the inverse kinematics, which becomes more complex as the manipulator's degrees of freedom increase, besides presenting multiple solutions. The angular variables obtained by the inverse kinematics equations are used by the controller to position the terminal organ of the manipulator at a specific point in its work volume. In the search for alternatives to overcome these problems, in this work, the Adaptive Neuro-Fuzzy Inference Models (ANFIS) are used to solve the inverse kinematics, by means of simulations, to obtain the positioning of a robot manipulator of 5 degrees of freedom, consisting of seven servomotors controlled by the Intel® Galileo Gen 2 development platform, used as a case's study . In the simulations ANFIS's architecture are used three and four Gaussian membership functions of input. The performance of the implemented ANFIS architecture was compared to a Multi-layered Perceptron Network, demonstrating with the favorable results the ANFIS, its ability to learn and solve with low mean square error and with precision, the inverse kinematics for the manipulator under study. It is also verified that the performance of the ANFIS improves, as regards the accuracy of the results in the training process, , demonstrated by the mean deviation of the... (Complete abstract click electronic access below) / Mestre
534

Uma análise da infestação por plantas aquáticas utilizando imagens multiescala e redes neurais artificiais

Cruz, Narjara Carvalho da [UNESP] January 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:30Z (GMT). No. of bitstreams: 0 Previous issue date: 2005Bitstream added on 2014-06-13T18:09:43Z : No. of bitstreams: 1 cruz_nc_me_prud.pdf: 1504734 bytes, checksum: 24dad2fab48cdca8018cdd5f1df08e04 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nos últimos anos, infestações de plantas aquáticas em reservatórios estão sendo estudadas como um efeito do desequilíbrio causado pela poluição e represamento dos rios. A quantidade excessiva de plantas, conseqüente desse desequilíbrio, dificulta tanto a navegação como a produção de energia elétrica. Esse tipo de ocorrência, assim como a presença de algumas substâncias na água, provocam mudanças na radiância da mesma, registradas por sensores orbitais. Nesse sentido, técnicas de processamento e análise de dados de sensoriamento remoto podem se constituir em uma fonte complementar de dados e fornecer informações relacionadas ao grau de infestação de reservatórios. Nesse contexto, o presente trabalho teve como objetivo verificar a influência da resolução espacial de imagens multiespectrais na detecção e mapeamento de áreas infestadas por plantas aquáticas emersas em um reservatório de pequeno porte, através de utilização de procedimentos de análise multiescala e classificação supervisionada usando redes neurais artificiais. Para isso foram utilizadas imagens IKONOS multiespectrais (4 metros de resolução espacial) do reservatório de Salto Grande localizado na cidade de Americana- SP. Assim, foram geradas imagens multiescala, resultando em imagens de 8, 16 e 32 metros de resolução espacial. Na classificação das imagens, utilizando Redes Neurais Artificiais, os dados de entrada constituíram-se de imagens multiespectrais IKONOS (bandas 1, 2, 3 e 4), imagem de textura (banda do IVP), e uma imagem de índice de vegetação (NDVI). O procedimento metodológico adotado mostrou-se adequado para o mapeamento das variações espectrais da água e detecção das infestações por plantas aquáticas, nos vários níveis de resolução da imagem. Os resultados obtidos mostraram que a classificação pela rede neural, com os parâmetros... / In past few years, great infestations of aquatic plants in reservoirs have been studied as an effect of the environmental unbalance caused by pollution and damming of rivers. The excessive amount of plants, deriving from this unbalance, makes navigation and the production of electricity difficult. This kind of occurrence, as well as the appearance of some substances in the water, cause changes in the water radiance detected by satellite sensors. Thus, processing techniques and data analysis may be used as a complementary data source to give information related to the degree of infestation of these plants in reservoirs. So, the present dissertation aimed at verifying the influence of the spatial resolution of multispectral images in the detection and mapping of areas infested by aquatic plants in a small reservoir , through the use of multiscale analysis procedures and supervised classification using artificial neural networks. Multiespectral imagens IKONOS (spatial resolution of 4 meters) of the reservoir of Salto Grande, in the city of Americana-SP were used. So, multiscale images were generated, resulting in images of 8, 16 and 32 meters of spatial resolution. In the classification of these images, using Artificial Neural Networks, the input data was constituted of multispectral images IKONOS (bands 1, 2, 3 and 4), image of texture (band of NIR), and one image of vegetation index (NDVI). The method used was adequate to map the spectral variation of the water and to detect infested areas of aquatic plants in the various levels of resolution of the image. The results obtained showed that the classification by the parameters defined for the original image and applied in the training of the scheme adopted for the different resolution levels was satisfactory. Furthermore, an analysis was made comparing multiscale images classified through crossed comparison, which permits comparing...(Complete abstract click electronic access below)
535

Avaliação de métodos de previsão de cargas elétricas em curto prazo para aplicação em sistemas de distribuição inteligentes / Evaluation of methods for prevision of loadsin electrical short term for application in distribuction system intelligent

Garcia, Lidia Maria Dutra 09 August 2013 (has links)
In Electric Power Systems understand the future behavior of electric loads is crucial to make a decision. The long, medium and short term load forecast is essential power systems. Considering the gradual transformation of the traditional distribution systems to smart grids, where the electric system automation and online communication are effective, the forecast in very short term gets new challenges. Based on these facts, the objective of this thesis is to identify the most appropriate methods to accomplish these forecasts to contribute to decision-making in distribution systems operation. Various techniques of forecasting and simulations in different methods were studied, in order to identify which of these offers the best results regarding demand the forecast in the very short term. The quantities considered to make predictions and, which have more relevance to the horizon under study are electrical and climate. The methods used in the simulations were the Artificial Neural Networks (ANN) type recurrent Elman e NARX and Neurofuzzy. / Em Sistemas Elétricos de Potência conhecer o comportamento futuro das cargas elétricas é de fundamental importância para tomada de decisões. A previsão de cargas elétricas é essencial nos horizontes de longo, médio, curto e curtíssimo prazo. Tendo em vista a gradual transformação dos sistemas de distribuição tradicionais para sistemas inteligentes de distribuição, onde a automação do sistema elétrico e a comunicação online estejam efetivas, a previsão no curtíssimo prazo ganha novos desafios. Com base nesses fatos esta dissertação busca identificar os métodos mais adequados para realizar essas previsões de forma a contribuir com a tomada de decisões na operação dos sistemas de distribuição de energia elétrica. Foram estudadas várias técnicas de previsão e realizadas simulações em diferentes métodos de forma a identificar qual desses apresenta melhor resultado com relação à previsão de demanda no curtíssimo prazo. As grandezas consideradas para realizar as previsões e que apresentam maior relevância para o horizonte em estudo são elétricas e climáticas. Os métodos utilizados nas simulações foram as Redes Neurais Artificiais (RNAs) do tipo recorrente Elman e NARX e Neurofuzzy.
536

Sistemas inteligentes para monitoramento e diagnósticos de falhas em motores de indução trifásicos / Intelligent systems for faults monitoring and diagnosis in three-phase induction motors

Marcelo Suetake 11 April 2012 (has links)
O objetivo desta tese consiste na implementação de sistemas inteligentes para monitoramento e diagnósticos de falhas ocorrentes em motores de indução trifásicos. Para tanto, desenvolveu-se uma bancada de experimentos que visa ensaios de falhas relacionados a curto-circuito entre as bobinas do enrolamento de estator, quebras nas barras da gaiola de esquilo do rotor e, finalmente, rolamentos defeituosos. Mais especificamente, o enfoque principal consiste na proposição de uma abordagem neural de detecção de quebras nas barras de rotores de motores de indução trifásicos mediante a análise do espectro de frequência e aplicação de técnicas de análise das componentes principais. Considerou-se o acionamento do motor de indução tanto pela tensão de alimentação da rede quanto por inversor trifásico em diferentes frequências, operando sob diversas condições de torque de carga para a avaliação da metodologia. / The objective of this thesis consists of the implementation of intelligent systems for three-phase induction motors fault diagnosis and condition monitoring. Therefore, an experimental test stand for stator winding inter-turn short circuit faults, broken rotor bar in squirrel cage and, finally, defective wheel bearing has been designed. The main focus is to propose a neural network approach, which uses spectral frequency analysis and principal component analysis techniques to detect broken rotor bar in squirrel cage induction motor. Induction motor operating at different load torque conditions and supplied with sinusoidal voltage supply and three-phase inverter at different frequency was considered in the experiment for methodology evaluation.
537

Identificação de extensas áreas de culturas agrícolas empregando uma abordagem espectro-temporal utilizando imagens MODIS / Identification of agricultural crop areas extensive using an approach spectro-temporal using MODIS images

Braga, Alessandra Lopes 06 March 2007 (has links)
Made available in DSpace on 2015-03-26T13:28:40Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1954884 bytes, checksum: e05012da0f1e291b4123e380e1682d25 (MD5) Previous issue date: 2007-03-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Remote sensing images have spatial, spectral, radiometric and temporal characteristics, which become an important tool for agricultural applications, in several aspects. This thesis describes a methodology for classification of extensive agricultural areas, in regional scale, using MODIS (Moderate Resolution Imaging Spectro-radiometer) images. It was used a spectral-temporal surface response, where each pixel of the image is represented in a three-dimensional space and the axes are: time, wavelength and reflectance, respectively. The methodology consists of an interpolation of analytical surfaces, passing through control points, using two types of interpolators (Collocation and Polynomial Trend Surfaces). Through these interpolation methods, the surface coefficients were generated, which describe the distribution of the surface in the three-dimensional space. These coefficients were then used into the classification process. Two classification algorithms were used, the maxima likelihood and artificial neural network classifiers. One of the drawbacks, in supervised classification process, is the acquisition of the reference image. For this work were used three distinct methodologies for its attainment: thematic image sampling from the spatial resolution of 30m to 250m; digitalization of homogeneous polygons on the screen; and neighborhood operation, which consists of the elimination of pixels with neighborhood with high variation on the digital level. Statistical analyses were used in order to validate the results. The results show that the classification using neural networks had the best resulted, even with small training sample size. The results also show the importance of high quality reference image generations. / Imagens do sensoriamento remoto possuem características espaciais, espectrais, radiométricas e temporais, tornando-se assim uma importante ferramenta para aplicações agrícolas nos mais diversos aspectos. Neste sentido, esta dissertação descreve uma metodologia para a classificação de extensas áreas agrícolas, em escala regional, utilizando imagens MODIS (Moderate Resolution Imaging Spectroradiometer). Fez-se uso de superfícies de resposta espectral-temporal, onde cada pixel da imagem é representado em um espaço tridimensional, onde os eixos são respectivamente: o tempo, o comprimento de onda e a refletância. A metodologia consiste na interpolação de uma superfície analítica passando por pontos de controle, usando dois tipos de interpoladores (Collocation e Análise de Tendência Polinomial). Através dessa interpolação obtiveram-se os coeficientes que descrevem a distribuição da superfície no espaço tridimensional, e os mesmos foram utilizados para a classificação das imagens digitais. Para a classificação foram utilizados dois algoritmos, o classificador Gaussiano da Máxima verossimilhança e as Redes Neurais Artificiais. Uma das limitações, no processo de classificação supervisionada, é a aquisição da imagem de referência, assim para este trabalho foram usadas três metodologias distintas para sua obtenção: Reamostragem das imagens temáticas com resolução espacial de 30 para a resolução de 250 metros; Digitalização de polígonos homogêneos em tela; e Operação de vizinhança, que consiste na eliminação de pixels com vizinhança com alta variação no nível digital. Para a avaliação dos resultados obtidos foram utilizados testes e análises estatísticas. Os resultados mostram que as classificações pelas redes neurais apresentam os melhores resultados, até mesmo com poucas amostras de treinamento. Os resultados também mostram importância da alta qualidade na geração da imagem de referência.
538

Predi??o n?o-linear de curvas de produ??o de petr?leo via redes neurais recursivas

Ara?jo J?nior, Aldayr Dantas de 27 January 2010 (has links)
Made available in DSpace on 2014-12-17T14:08:36Z (GMT). No. of bitstreams: 1 AldayrDAJ.pdf: 1169839 bytes, checksum: a47b70e79b9bb61b42503d47bffbccd3 (MD5) Previous issue date: 2010-01-27 / One of the main activities in the petroleum engineering is to estimate the oil production in the existing oil reserves. The calculation of these reserves is crucial to determine the economical feasibility of your explotation. Currently, the petroleum industry is facing problems to analyze production due to the exponentially increasing amount of data provided by the production facilities. Conventional reservoir modeling techniques like numerical reservoir simulation and visualization were well developed and are available. This work proposes intelligent methods, like artificial neural networks, to predict the oil production and compare the results with the ones obtained by the numerical simulation, method quite a lot used in the practice to realization of the oil production prediction behavior. The artificial neural networks will be used due your learning, adaptation and interpolation capabilities / Uma das atividades essenciais na engenharia de petroleo e a estimativa de producao de oleo existente nas reservas petroliferas. O calculo dessas reservas e crucial para a determina??o da viabilidade economica de sua explotacao. Atualmente, a industria do petroleo tem se deparado com problemas para analisar a producao enquanto facilidades operacionais disponibilizam um volume de informacoes que crescem exponencialmente. Tecnicas convencionais de modelagem de reservatorios como simulacao matematica e visualizacao estao bem desenvolvidas e disponiveis. A proposta deste trabalho e o uso de tecnicas inteligentes, como as redes neurais artificiais, para a predicao de producao de petroleo e comparar seus resultados com os obtidos pela simulacao numerica, metodo bastante utilizado na pratica para a realizacao de predicao do comportamento da producao de petroleo. As redes neurais artificiais serao usadas devido a sua capacidade de aprendizado, adaptacao e interpolacao
539

[en] OPTIMIZATION OF THE PARAMETERS OF DELIGNIFICATION OF SUGARCANE BAGASSE WITH ALKALINE HYDROGEN PEROXIDE THROUGH NEURAL MODEL / [pt] OTIMIZAÇÃO DOS PARÂMETROS DA DESLIGINIZAÇÃO DO BAGAÇO DE CANA-DE-AÇÚCAR COM PERÓXIDO DE HIDROGÊNIO ALCALINO ATRAVÉS DE MODELO NEURAL

ARTUR SERPA DE CARVALHO REGO 22 May 2018 (has links)
[pt] O Brasil é o maior produtor de cana-de-açúcar do mundo, produzindo a maior quantidade de resíduo em forma de bagaço, que atualmente é queimado na indústria para geração de energia elétrica, apesar de ainda possuir potencial para produzir outros compostos de maior valor agregado, como etanol de segunda geração, ácido lático, butanodiol e etc. Neste trabalho, foi avaliado o desempenho do pré-tratamento do bagaço de cana-de-açúcar utilizando peróxido de hidrogênio em meio alcalino. Com o intuito de retirar a lignina para liberar os carboidratos no meio, foram realizados experimentos variando a temperatura (25 graus Celsius – 45 graus Celsius) e concentração de peróxido de hidrogênio (1,5 por cento - 7,5 por cento) a pH 11,5 por 1 h em um shaker orbital a 100 rpm. O desempenho do pré-tratamento foi medido utilizando o método gravimétrico de Klason para quantificar a lignina, o HPLC para determinar as concentrações de xilose e glicose e o infravermelho para determinar mudanças na estrutura da biomassa. A análise de Klason indicou 45 graus Celsius /7,5 por cento como melhor condição de solubilização, com 75,4 por cento de solubilização, as análises de HPLC indicaram 45 graus Celsius/7,5 por cento como melhor condição para a obtenção de glicose com concentração de 1,66 g/L e 25 graus Celsius/7,5 por cento para obtenção de xilose com concentração de 0,82 g/L e as análises de FT-IR indicaram 25 graus Celsius /1,5 por cento como melhor condição de oxidação, com 66,9 por cento de oxidação de lignina. Para cada análise, foi proposto um modelo de rede neural artificial. A rede das análises de Klason teve a topologia trainlm/logsig/4 com SSE 0,00723 e R2 0,995, a rede das análises de glicose teve topologia trainlm/logsig/4 com SSE 0,0328 e R2 0,97384, a rede das análises de xilose teve topologia trainlm/logsig/5 com SSE 0,289 e R2 0,87441 e a rede das análises de FT-IR teve topologia trainlm/logsig/5 com SSE 0,0316 e R2 0,98414. / [en] Brazil leads the world in sugarcane production, consequently produces also the greatest amount of sugarcane bagasse. Currently, this sugarcane bagasse is leveraged for power generation in the mills, but this biomass still has a potential for production of others value-added compounds such as the second-generation ethanol, lactic acid, butanediol and etc. The present work was carried out in order to study the efficiency of the delignification process of sugarcane bagasse with alkaline hydrogen peroxide. Two variable were assessed experimentally: temperature (25 Celsius degrees - 45 Celsius degrees) and H2O2 concentration (1.5 percent -7.5 percent) at pH 11.5 for 1 h in an orbital shaker at 100 rpm. The Klason Method was used to measure concentration of extracted lignin, HPLC was used to measure the concentration of glucose and xylose and FT-IR analysis was applied to identify lignin structure in the samples. The Klason analysis indicated the 45 Celsius degrees/7,5 percent as the optimum condition with 75,4 percent of the lignin solubilidized, the glucose analysis indicated 45 Celsius degrees/7,5 percent as the optimum condition with a concentration of 1,66 g/L, the xylose analysis indicated 25 Celsius degrees/7,5 percent as the optimum condition with a concentration of 0,82 g/L, and the FT-IR analysis indicated 25 Celsius degrees/1,5 percent as the optimum condition with 66,9 percent of the lignin oxidized. For each analysis, an ANN model was proposed. The network of the Klason analysis had a trainlm/logsig/4 topology with SSE 0,00723 and R2 0,995, the network of the glucose analysis had a trainlm/logsig/4 topology with SSE 0,0328 and R2 0,97384, the network of the xylose analysis had a trainlm/logsig/5 topology with SSE 0,289 and R2 0,87441, the network of the FT-IR analysis had a trainlm/logsig/5 topology with SSE 0,0316 and R2 0,98414.
540

[en] HYBRID VERSUS PURE MODELS: AN ANALYSIS OF PREDICTION PERFORMANCE USING BRAZILIAN STREAMFLOW / [pt] MODELOS PUROS VERSUS HÍBRIDOS: UMA ANÁLISE DE PERFORMANCE UTILIZANDO SÉRIES DE VAZÕES BRASILEIRAS

ANA PAULA SANTOS DELFINO 06 December 2018 (has links)
[pt] O setor elétrico brasileiro é fortemente dependente da energia hidrelétrica e a predição acurada das séries de vazões é essencial para o planejamento e gestão de risco. Recentemente, os modelos híbridos, que combinam técnicas de previsão e pré-processamento de dados, têm se destacado. Entretanto, na literatura, não há consenso sobre a superioridade de previsão destes modelos em relação aos tradicionais (puros). Este trabalho visa contribuir para literatura com a avaliação de performance de previsão e a adequabilidade de modelos puros e híbridos para séries mensais estacionárias e não estacionárias de vazões. Para isso, foram construídos modelos usando as técnicas de previsão de Redes Neurais Artificiais e ARIMA acoplados com as técnicas de pré-processamento de dados Singular Spectrum Analysis (SSA) e Seasonal and Trend decomposition based on Loess (STL). Como resultado, este estudo mostra para a série de Belo Monte (estacionária) os modelos puros obtiveram um melhor desempenho, já para a série de Sobradinho (não estacionária) os modelos híbridos foram os melhores. / [en] The Brazilian electricity sector is strongly dependent on hydropower and the accurate prediction of streamflow series is essential for planning and risk management. Recently, hybrid models, which combine prediction and data preprocessing techniques, have stood out. However, in the literature there is no consensus on the predictive superiority of these hybrid models versus their pure version. This paper aims to contribute to the literature with the evaluation of prediction performance suitability of pure and hybrid models for monthly stationary and non - stationary series of streamflow. For this, models were constructed using Artificial Neural Network and ARIMA forecasting techniques coupled with the Singular Spectrum Analysis (SSA) and Seasonal and Trend decomposition based on Loess (STL) data pre-processing techniques. As a result, this study shows that pure models obtained a better performance for the Belo Monte (stationary series), already hybrid models were the best for the Sobradinho (non-stationary series).

Page generated in 0.088 seconds