• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 772
  • 11
  • 8
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 795
  • 795
  • 795
  • 551
  • 527
  • 460
  • 132
  • 121
  • 117
  • 107
  • 93
  • 69
  • 59
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
551

Modelos de previsão de preços aplicados aos contratos futuros agropecuários / Price forecasting models applied to agricultural future contracts

Bressan, Aureliano Angel 04 February 2001 (has links)
Submitted by Nathália Faria da Silva (nathaliafsilva.ufv@gmail.com) on 2017-07-04T17:58:58Z No. of bitstreams: 1 texto completo.pdf: 538594 bytes, checksum: 6093b581fc640e6c06d18048d80424f2 (MD5) / Made available in DSpace on 2017-07-04T17:58:58Z (GMT). No. of bitstreams: 1 texto completo.pdf: 538594 bytes, checksum: 6093b581fc640e6c06d18048d80424f2 (MD5) Previous issue date: 2001-02-04 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Esta pesquisa trata da aplicabilidade de modelos de previsão de séries temporais como ferramenta de decisão de compra e venda de contratos futuros da BM&F, em datas próximas ao vencimento. Para fins empíricos, foram consideradas as commodities boi gordo, café e soja. O objetivo geral foi verificar qual modelo fornece as previsões mais precisas para cada série de preços considerada no mercado físico. O objetivo específico foi calcular os retornos médios de cada modelo em operações de compra e venda nos mercados futuros das commodities analisadas, de modo a fornecer um indicativo do potencial ou da limitação de cada um deles. Os modelos estudados foram os de Box & Jenkins (ARIMA), Redes Neurais, Estruturais e Bayesianos. Os dados utilizados corresponderam às cotações semanais de boi gordo, café e soja nos mercados físico e futuro. A discussão se baseou na hipótese de que esses modelos são instrumentos viáveis de auxílio à tomada de decisão por parte de agentes ligados ao agronegócio, reduzindo a incerteza quanto ao comportamento futuro dos preços. A análise foi conduzida, primeiramente, em termos de Erro Percentual de Previsão da série de preços do mercado físico para, em seguida, verificar os retornos em simulações de compra e venda de contratos futuros de cada produto, utilizando-se o Índice Sharpe, além do viés positivo ou negativo dessa média, através da estatística de simetria e do grau de dispersão dos retornos, medido pela curtose da distribuição destes. De modo geral, os resultados indicaram que: a) os modelos de previsão de séries temporais captam, de modo coerente, o padrão de comportamento dos preços analisados; b) há, contudo, diferenças de desempenho preditivo entre os modelos e entre cada mercado; e c) os retornos financeiros se mostraram positivos na maioria dos contratos analisados, indicando o potencial de utilização desses modelos em negociações de contratos para datas próximas ao vencimento, com destaque para operações fundamentadas nas previsões dos Modelos ARIMA e Estruturais. / This research deals with the usefulness of times series forecast models as a tool for buy and sell decisions of the brazilian BM&F future contracts, in dates nearby the expiration. For this purpose, the commodities considered were live cattle, coffee and soybeans. The general objective is to verify which model generates the most accurate forecasts for each price series of the considered commodities in the spot market. The specific objective is to calculate the medium returns of each model in buy and sell operations in each market of the analyzed commodities, in way to provide an indication of the potentials or limitations of each one.The models considered are the Box & Jenkins (ARIMA), Neural Networks, Structural and Bayesians time series models. The data utilized correspond to the weekly quotations of live cattle, coffee and soybeans in the spot and futures markets. The discussion is based on the hypothesis that those models are viable instruments to support decisions of economic agents participating in the agribussiness, reducing the uncertainty related to the future behavior of the spot prices. The analysis is carried out, firstly, in terms of Percentage Forecast Error for the price series in the spot market. Then, it verifies the returns in simulated buy and sell of future contracts of each product, using the Sharpe Index as a tool for comparsion, as well as the symmetry and kurtosis statistics. In general, the results indicate that: a) the time series forecast models capture coherently the pattern of the analyzed prices; b) there is, however, differences of forecast performance among the models and markets; and c) the financial returns are shown positive in most of the analyzed contracts, indicating the potential use of those models in negotiations of contracts for dates close to the expiration, with prominence for operations based in the forecasts of the ARIMA and Structural models.
552

Modelos causais no cálculo de capital para risco operacional: investigação do uso de redes neurais artificiais como modelo avançado de mensuração de capital

Ueno, Angela Sayuru Cristofoli 08 February 2010 (has links)
Made available in DSpace on 2010-04-20T21:00:04Z (GMT). No. of bitstreams: 4 Angela Sayuri Cristofoli Ueno.pdf.jpg: 3172 bytes, checksum: cee83d936530b3fbd5bbd2e1e33630f0 (MD5) Angela Sayuri Cristofoli Ueno.pdf.txt: 101059 bytes, checksum: 8aed03cbd2b118345bf95e9de842bd8b (MD5) license.txt: 4712 bytes, checksum: 4dea6f7333914d9740702a2deb2db217 (MD5) Angela Sayuri Cristofoli Ueno.pdf: 1282852 bytes, checksum: f569242d1dee8eb86948ddc7774f30c9 (MD5) Previous issue date: 2010-02-08T00:00:00Z / The operational risk management and measurement is an increasing concern throughout the community of financial institutions. The adequate choice of the operational risk capital calculation model can become a competitive differential. This study presents the advantages of adopting causal models for operational risk management and measuring. The investigation of the Artificial Neural Networks application for this purpose shows that the causal model results in capital amounts more aligned to the financial institution’s risk exposure. Furthermore, there is the advantage that, as more risk sensible the capital calculation methodology is, higher will be the incentive for an appropriate risk management in the day-today institution’s business. This not only reduces the needs for capital allocation, but also decreases the expected losses. Therefore, the results are positive and encourage future researches about this subject. / A gestão e a mensuração do risco operacional é uma preocupação crescente da comunidade bancária, de modo que a escolha adequada do modelo de alocação de capital para risco operacional pode tornar-se um diferencial competitivo. Este trabalho apresenta as vantagens da adoção de modelos causais para a gestão e mensuração do risco operacional e, ao investigar a aplicação de Redes Neurais Artificiais para tal propósito, comprova que o modelo causal chega a valores de capital mais alinhados à exposição ao risco da instituição financeira. Além disso, há a vantagem de que, quanto mais sensível a risco a metodologia de cálculo de capital for, maior será o incentivo para uma gestão apropriada dos riscos no dia-a-dia da instituição financeira, o que não apenas reduz sua necessidade de alocação de capital, quanto diminui suas perdas esperadas. Os resultados, portanto, são positivos e motivam estudos futuros sobre o tema.
553

[en] QUANTUM-INSPIRED EVOLUCIONARY ALGORITHM WITH MIXED REPRESENTATION APPLIED TO NEURO-EVOLUTION / [pt] ALGORITMO EVOLUCIONÁRIO COM INSPIRAÇÃO QUÂNTICA E REPRESENTAÇÃO MISTA APLICADO A NEUROEVOLUÇÃO

ANDERSON GUIMARAES DE PINHO 06 April 2011 (has links)
[pt] Esta dissertação objetivará a unificação de duas metodologias de algoritmos evolutivos consagradas para tratamento de problemas ou do tipo combinatórios, ou do tipo numéricos, num único algoritmo com representação mista. Trata-se de um algoritmo evolutivo inspirado na física quântica com representação mista binário-real do espaço de soluções, o AEIQ-BR. Este algoritmo trata-se de uma extensão do modelo com representação binária de Jang, Han e Kin, o AEIQ-B para otimizações combinatoriais, e o de representação real de Abs da Cruz, o AEIQ-R para otimizações numéricas. Com fins de exemplificação do novo algoritmo proposto, o discutiremos no contexto de neuroevolução, com o propósito de configurar completamente uma rede neural com alimentação adiante em termos: seleção de variáveis de entrada; números de neurônios na camada escondida; todos os pesos existentes; e tipos de funções de ativação de cada neurônio. Esta finalidade em se aplicar o algoritmo AEIQ-BR à neuroevolução – e também, numa analogia ao modelo NEIQ-R de Abs da Cruz – receberá a denominação NEIQ-BR. N de neuroevolução, E de evolutivo, IQ de inspiração quântica, e BR de binário-real. Para avaliar o desempenho do NEIQ-BR, utilizarse- á um total de seis casos benchmark de classificação, e outros dois casos reais, em campos da ciência como: finanças, biologia e química. Resultados serão comparados com algoritmos de outros pesquisadores e a modelagem manual de redes neurais, através de medidas de desempenho. Através de testes estatísticos concluiremos que o algoritmo NEIQ-BR apresentará um desempenho significativo na obtenção de previsões de classificação por neuroevolução. / [en] This work aimed to unify two methodologies of evolutionary algorithms to treat problems with or combinatorial characteristics, or numeric, on a unique algorithm with mix representation. It is an evolutionary algorithm inspired in quantum physics with mixed representation of the solutions space, called QIEABR. This algorithm is an extension of the model with binary representation of the chromosome from Jang, Han e Kin, the QIEA-B for combinatorial optimization, and numeric representation from Abs da Cruz, the QIEA-R for numerical optimizations. For purposes of exemplification of the new algorithm, we will introduce the algorithm in the context of neuro-evolution, in order to completely configure a feed forward neural network in terms of: selection of input variables; numbers of neurons in the hidden layer; all existing synaptic weights; and types of activation functions of each neuron. This purpose when applying the algorithm QIEA-BR to neuro-evolution receive the designation of QIEN-BR. QI for quantum-inspired, E for evolutive, N for neuro-evolution, and BR for binary-real representation. To evaluate the performance of QIEN-BR, we will use a total of six benchmark cases of classification, and two real cases in fields of science such as finance, biology and chemistry. Results will be compared with algorithms of other researchers and manual modeling of neural networks through performance measures. Statistical tests will be provided to elucidate the significance of results, and what we can conclude is that the algorithm QIEN-BR better performance others researchers in terms of classification prediction.
554

Monitoramento e modelagem da produção de sedimentos em uma bacia hidrográfica no noroeste do Rio Grande do Sul / Monitoring and modelling of sediment yeld in a watershed in the northwest of Rio Grande do Sul

Sari, Vanessa January 2017 (has links)
O entendimento da dinâmica hidrossedimentológica em uma bacia hidrográfica pode ser realizado pelo monitoramento das variáveis hidrossedimentológicas e pela modelagem desses processos. Nesse contexto, essa pesquisa analisou a eficiência do modelo Soil and Water Assessment Tool (SWAT) na previsão dos processos hidrossedimentológicos na bacia do Taboão (Pejuçara, RS), considerando as saídas (vazão e produção de sedimentos) em um passo de tempo mensal e diário. Para tal, foram utilizados dados de chuva horária dos anos 2008 a 2016, monitorada em quatro pluviógrafos instalados na bacia (PVGs 34, 40, 43 e 51), e dados climáticos da estação meteorológica de Cruz Alta. As informações de vazão, para os anos de 2011 a 2016, foram obtidas por meio da conversão dos dados de nível de água monitorados no exutório da bacia, utilizando uma curva-chave cota x vazão. A concentração de sedimentos suspensos (CSS), para os anos de 2013 a 2015, foi estimada por meio de modelos de redes neurais artificias (RNAs), empregando como entrada dados de turbidez e de nível de água, monitorados no exutório da bacia. O preenchimento das falhas dos registros de precipitação horária foi executado por meio de modelos de Combinações de RNAs (CRNAs) associados à média simples (MS) ou à média ponderada pelo inverso da distância (MP), utilizando como entrada dados pluviométricos dos postos vizinhos. As falhas nos dados de nível de água foram preenchidas por modelos de RNAs, que usaram como entrada níveis de água monitorados em sub-bacias embutidas ou adjacente à bacia do Taboão (bacias do Donato, Turcato, Alemão e Andorinhas), e dados de precipitação média dos quatro pluviógrafos utilizados nessa pesquisa Foram determinadas as defasagens temporais entre os níveis de água das diferentes bacias, e testados o uso da precipitação média com aplicação de filtro temporal linear e/ou exponencial. Os registros falhos nos dados de turbidez foram preenchidos por modelos de RNAs, que empregaram como entrada informações de nível de água monitoradas, de 10 em 10 minutos, no exutório da bacia. A calibração do modelo SWAT para a previsão dos processos hidrológicos foi realizada usando dados de vazão, diários e mensais, para os anos de 2013, 2014 e 2016 e; a etapa de verificação foi executada para os anos de 2011 e 2015. Considerou-se o Método de Green & Ampt para determinação da infiltração de água no solo e 2 anos (2008-2009) para período de aquecimento do modelo SWAT. A calibração do modelo para a produção de sedimentos foi realizada para os anos de 2013 e 2015 e o processo de verificação foi efetuado para o ano de 2014. A calibração e a análise de sensibilidade dos parâmetros foram realizadas com auxílio do SWAT-CUP, utilizando o algoritmo SUFI-2. O coeficiente de Nash–Sutcliffe (NS) das RNAs para preenchimento das falhas de precipitação variou entre 0,35, classificado como “Insatisfatório”, e 0,86, avaliado como “Muito Bom”, considerando critérios propostos por Moriasi et al. (2007). Das 13 RNAs desenvolvidas para preenchimento das falhas nos níveis de água, apenas uma delas foi classificada como de desempenho “Satisfatório” durante o treinamento e; as demais enquadraram-se como de desempenho “Muito Bom”. Na etapa de verificação, sete RNAs foram consideradas com desempenho “Muito Bom” e cinco com “Bom” desempenho No preenchimento das falhas de turbidez, das cinco RNAs desenvolvidas, quatro mostraram “Bom” desempenho durante o treinamento, e uma rede teve desempenho “Muito Bom”; enquanto que, no processo de verificação, duas RNAs tiveram desempenho “Muito Bom”, uma delas foi classificada com desempenho “Bom” e; duas RNAs foram consideradas com desempenho “Satisfatório”. As estatísticas de desempenho dos modelos de RNAs desenvolvidos para o preenchimento das falhas de nível de água, de turbidez e de precipitação também demonstraram que tais redes representam uma alternativa interessante para a obtenção de séries contínuas desses dados, possibilitando o uso posterior dos registros para a modelagem hidrossedimentológica. A calibração do modelo SWAT para estimativa da vazão mensal mostrou desempenho “Muito Bom” (NS=0,78), e para a determinação da vazão diária foi considerado “Bom” (NS=0,72). Na etapa de verificação, o modelo manteve o “Bom” desempenho (NS=0,68) para estimativa da vazão diária, decaindo para desempenho “Satisfatório” (NS=0,64) para a simulação em escala mensal. Para a estimativa da produção de sedimentos mensal, o desempenho do modelo foi considerado “Bom” tanto na calibração (NS=0,66) quanto na verificação (NS=0,70). Na escala diária o desempenho foi “Satisfatório” para a calibração (NS=0,64) e “Insatisfatório” para a verificação (NS=0,38) Tais resultados indicam que o modelo SWAT é uma ferramenta promissora para aplicações na previsão hidrossedimentológica na bacia do Taboão, especialmente em termos de simulações dos processos hidrológicos. No entanto, existem limitações para aplicações na estimativa da produção de sedimentos, sobretudo quando considerados os processos em escala diária. Essas limitações são consequência da presença de processos erosivos na bacia (voçorocas), que não são simulados pelas rotinas presentes no modelo SWAT, bem como pelo escoamento dominante ser do tipo subsuperficial, com ocorrência de pipping; indicando-se, portanto, adequações nas rotinas do modelo para melhor representatividade desses processos. / The understanding of hydrosedimentological dynamics in a watershed can be obtained by monitoring the hydrossedimentological variables and by modeling these processes. In this context, this research analyzed the efficiency of the Soil and Water Assessment Tool (SWAT) in predicting the hydrosedimentological processes in the Taboão basin (Pejuçara, RS), considering the outputs (flow and sediment production) in a monthly and daily time step. For that, hourly rainfall data from 2008 to 2016 were monitored at four pluviographs installed in the basin (PVGs 34, 40, 43 and 51), and climate data were obtained from the Cruz Alta meteorological station. The flow information for the years 2011 to 2016 was obtained by converting the monitored water level data into flow by using a rating curve. The suspended sediment concentration (SSC), from 2013 to 2015, was estimated using artificial neural network (ANN) models, using as input turbidity and water level data, monitored in the basin. The filling of the hourly rainfall records was performed by models of Combinations of RNAs (CRNAs) associated with the simple mean (MS) or weighted mean to the inverse distance (MP), using as input rainfall data from the neighboring stations. Failures in the water-level data were filled by RNA models, which used as input water levels monitored in sub-basins adjacent or embedded to the Taboão basin (Donato, Turcato, Alemão and Andorinha basins), and mean precipitation data of the four pluviographs used in this research. The temporal lags between the water levels of the different basins were determined and the use of the average precipitation with linear and exponential temporal filters was tested The turbidity data records were filled by RNA models, using water level information monitored at every 10 minutes. The SWAT model calibration for predicting the hydrological processes was performed using daily and monthly flow data for the years 2013, 2014 and 2016 and the verification step was performed for the years 2011 and 2015; considering Green & Ampt Method for infiltration estimation and 2 years of warm-up period (2008-2009). The calibration of the model for sediment yield was performed for the years 2013 and 2015 and the verification process was carried out for the year 2014. The calibration and sensitivity analysis of the parameters were performed with the assistance of SWAT-CUP, using the SUFI-2 algorithm. The Nash-Sutcliffe Coefficient (NS) of the RNAs used to fill precipitation faults varied between 0.35, classified as "Unsatisfactory", and 0.86, evaluated as "Very Good", considering criteria proposed by Moriasi et al. (2007). Of the 13 RNAs developed to fill water level failures, only one of them was classified as a "Satisfactory" performance during training and; the others have been classified as "Very Good" performance. In the verification step, seven RNAs were considered to have "Very Good" performance and five had "Good” performance. In the fulfillment of the turbidity faults, of the five RNAs developed, four showed "Good" performance during the training, and one network had "Very Good" performance; while in the verification process two ANNs performed "Very Good", one of them was classified as "Good" and; two ANNs were considered to have "Satisfactory" performance The performance statistics of the ANN models developed to fill the water level, turbidity and precipitation failures also demonstrated that such networks represent an interesting alternative to obtain continuous series of these data, allowing the later use of the records for hydrossedimentological modeling. In the verification processes, the model maintained a “Good” performance (NS=0.68) to estimate the daily flow, decreasing to "Satisfactory" performance (NS=0.64) for the monthly scale simulation. For the estimation of sediment yield the model performance was considered "Good" for monthly calibration period (NS=0.66) and also for the verification (NS=0.70). In daily scale the performance was "Satisfactory" for calibration (NS=0.64) and “Unsatisfactory” in the verification (NS=0.38). These results indicate that the SWAT model is a promising tool for applications in the hydrosedimentological forecasting in the Taboão basin, especially in terms of hydrological processes simulations. However, there are limitations to applications in the estimation of sediment production, especially when considering daily scale processes. These limitations are due to the presence of erosive processes in the basin (gully erosion), which are not simulated by the routines present in the SWAT model, as well as by the existence of the lateral flow with occurrence of pipping; indicating, therefore, the need for adjustments in the routines of the model to better represent these processes.
555

Análises do sistema produtivo suinícola da região central do Rio Grande do Sul / Analysis of production system swine the central region of Rio Grande do Sul

Sangoi, Luiz Fernando January 2014 (has links)
O presente trabalho teve como objetivo principal utilizar a metodologia das análises multivariadas, modelagem matemática e redes neurais artificiais, na avaliação da eficiência produtiva de propriedades produtoras de suínos no Rio Grande do Sul. Os dados utilizados foram coletados em 47 municípios da região do Vale do Taquari, estado do Rio Grande do Sul, entre fevereiro e março de 2012, compreendendo o universo de 120 produtores. Utilizou-se um diagnóstico com perguntas estruturadas fechadas, em conjunto com os resultados produtivos de 494 abates realizados nos anos de 2010 e 2011. Analisou-se as variáveis produtivas na terminação de suínos criados em dois momentos climáticos anuais distintos, primavera/verão e outono/inverno, comparando as diferenças ocorridas nas variáveis de produtividade, o que resultou no capítulo 2, “Análise das variáveis produtivas de suínos na fase de terminação em duas estações climáticas”, no qual se identificou o perfil ideal para produtores terminadores de suínos através de um modelo matemático capaz de predizer quais as chances de o produtor obter um melhor desempenho na suinocultura, que resultou no capítulo 3, “Uso da otimização de desempenho interativo na identificação do perfil ideal de produtores terminadores de suínos”. Com o auxílio da Inteligência Artificial, uma tecnologia cada vez mais usada, na tentativa de avaliar com maior precisão quais os fatores que na criação de suínos podem contribuir significativamente para um aumento da produtividade, resultou no capítulo 4, “A utilização da Inteligência Artificial para a predição dos parâmetros produtivos da suinocultura”. Com esses resultados, pode-se dizer que: identificou-se quais as condições ambientais e climáticas impactaram sobre a eficiência produtiva dos suínos, observando-se maior peso médio vivo, ganho médio diário e taxa de mortalidade nos animais criados na estação outono/inverno. Já a Conversão Alimentar não apresentou efeito significativo da estação do ano. Ainda, identificou-se o perfil ideal para produtores terminadores de suínos através de um modelo matemático capaz de predizer quais as chances de o produtor obter um melhor desempenho na suinocultura e, por meio de predições geradas, a partir do auxílio das Redes Neurais Artificiais, obteve-se como principal resultado a condição de se afirmar que o uso da metodologia das Redes Neurais Artificiais pode predizer com reduzidas margens de erro, as variáveis produtivas, conversão alimentar, mortalidade e ganho médio diário. / The main objective of the present work2 is to use the methodology of multivariate analysis, mathematical modeling and artificial neural networks in the production evaluation efficiency of swine-producing farms in Rio Grande do Sul state. The data used were collected in 47 municipalities in the region of Vale do Taquari, between February and March 2012, covering the universe of 120 producers. There are used a diagnosis with structured questions, in conjunction with the productive results of 494 slaughterings carried out in the years 2010 and 2011. Productive variables examined in swine termination phase reared in two distinct annual weather moments, spring/ summer and autumn/winter, comparing the differences occurring in the productivity variables, which resulted in section 2, "Analysis of the productive variables of swine on termination phase in two climatic seasons", where it was identified the ideal profile for producers s through a mathematical model to predict the chances of the better performance in swine production, which resulted in section 3, "Using the interactive performance optimization in identifying the ideal profile of swine terminators phase producers", and with the aid of artificial intelligence, a technology increasingly used in an attempt to assess with greater precision what factors in swine breeding can contribute significantly to improved productivity, resulted in sector 4 "The use of artificial intelligence for prediction of swine productive parameters". With these results, it can be said that: what are the identified environmental and climatic conditions that impacted on the swine productive efficiency, observing a greater average weight, daily gain and mortality rate in animals reared in autumn/winter seasons. The feed conversion did not provide any significant effect . Still, although the ideal profile for terminators producers through a mathematical model to predict the chances of the producer better performance and, by generated predictions from the artificial neural networks, obtained as main result the condition to assert that this method can aid for the predictionm with reduced margins of error, productive variables, feed conversion ratio, mortality and average daily gain.
556

Abordagem estocástica para análise da relação entre a disponibilidade e a demanda hídrica no futuro

Oliveira, Guilherme Garcia de January 2014 (has links)
O objetivo deste trabalho foi propor uma metodologia para investigar os possíveis efeitos das mudanças climáticas na disponibilidade hídrica e as alterações da demanda hídrica no futuro, através de uma abordagem estocástica, que considera projeções climáticas, hidrológicas, populacionais e agropecuárias. O trabalho foi aplicado à bacia hidrográfica do rio Ijuí, noroeste do Rio Grande do Sul, Brasil. A metodologia foi composta por cinco módulos, envolvendo: i) a modelagem hidrológica para transformação da precipitação e evapotranspiração em vazão, utilizando Redes Neurais Artificiais (RNAs), ii) a correção e análise dos cenários climáticos para o futuro, oriundos do modelo Eta CPTEC/HadCM3, iii) a modelagem estocástica das vazões mensais no futuro, iv) a modelagem estocástica das variáveis populacionais e agropecuárias para geração de séries de demanda hídrica no futuro e, v) a simulação do balanço hídrico para geração de curvas de regularização, objetivando uma análise da relação entre a disponibilidade e a demanda hídrica no futuro. Como resultados relacionados ao processo de modelagem hidrológica, destaca-se que o modelo com RNAs mais adequado para a simulação das vazões mensais apresentou apenas três variáveis de entrada, obtendo um coeficiente de Nash-Sutcliffe igual a 0,904. Através da análise de sensibilidade, foi observado que a RNA escolhida relacionou corretamente as variáveis de entrada com a saída da rede, respeitando os princípios físicos envolvidos no sistema hidrológico. Quanto à análise dos cenários climáticos e vazões resultantes do processo de modelagem hidrológica, as diferenças entre os valores simulados com base no modelo Eta e os valores observados, no período de avaliação dos modelos (1976-1990), atingiram erros algumas vezes superiores a 20%. A vazão média de longo período, por exemplo, apresentou uma alteração de 141,6 m³/s (1961-1990) para 200,3 m³/s (2011-2040). Também foi observado um incremento na vazão média e no desvio padrão mensal entre os meses de janeiro e outubro. Entre os meses de fevereiro e junho, o percentual de aumento na vazão média mensal foi mais acentuado, superando o índice de 100%. Considerando-se os intervalos de confiança das estimativas de vazão para o futuro, pode-se concluir que existe uma tendência de aumento na variabilidade hidrológica no período entre 2011 e 2040, o que indica a possibilidade de ocorrência de séries temporais com períodos mais acentuados de estiagem e de cheias. Quanto às alterações na demanda hídrica, foi constatado que a tendência de crescimento das atividades agrícolas irrigadas no período analisado é bem superior à tendência observada em relação à criação animal e ao abastecimento humano. Mantida a tendência e os resíduos modelados entre 2003 e 2010, a média das séries estocásticas geradas para o futuro indica que haverá 1.954 km² de áreas irrigadas em 2040, fazendo com que a demanda aumente de 6,3 m³/s (2011) para 28 m³/s (2040), no mês de maior demanda hídrica (janeiro). Na etapa final, ao calcular a razão entre a demanda para usos consuntivos e a disponibilidade hídrica (demanda/disponibilidade), no período entre 2011 e 2040, foi observada uma tendência de aumento neste percentual ao longo dos anos. Em média, a relação demanda/disponibilidade em 2011 foi de apenas 6,06%, variando entre 0,81% (maio) e 20,15% (dezembro). Já em 2040 esta proporção aumentou para 13,82%, variando entre 1,09% (maio) e 43,3% (dezembro). Quanto às mudanças nas curvas de regularização obtidas através da simulação do balanço hídrico em um reservatório fictício, os resultados atestam que, em caso de confirmação do cenário de mudança climática utilizado, haverá a necessidade de reservatórios com capacidade cada vez maior para atender à demanda para usos consuntivos, em virtude do agravamento das estiagens no início do verão. / The purpose of this study was to propose a methodology to investigate the possible effects of climate change on water availability and changes in water requirement in the future, through a stochastic approach that considers climate, hydrological, agricultural and population projections. The method was applied to Ijuí river basin, northwest of Rio Grande do Sul, Brazil. The methodology consisted of five modules, involving: i) hydrological modeling of monthly flows using Artificial Neural Networks (ANNs), ii) correction and analysis of climate scenarios for the future, derived from the Eta model CPTEC / HadCM3, iii) the stochastic modeling of monthly flows in the future, iv) the stochastic modeling of population and agricultural variables to generate water requirement series in the future and, v) the simulation of the water balance for the generation of curves regularization aiming an analysis of the relationship between water availability and water requirement in the future. Regarding the results of the hydrologic modeling, it is highlighted that ANN model more suitable model for the flow simulation presented only three input variables, obtaining a Nash-Sutcliffe coefficient equal to 0.904. It was observed, through sensitivity analysis, that the ANN related correctly chosen input variables with the output of the network, respecting the physical principles involved in the hydrological system. The analysis of climate scenarios and flows resulting from the hydrologic modeling process showed that the differences between the simulated values based on the Eta model and the observed values for the period of assessment models (1976-1990), errors sometimes reached more than 20 %. Therefore, one must consider that these uncertainties will be replicated in future scenarios, as to analysis of the effects of climate change on water availability. Overall, the results related to stochastic modeling of monthly flows for the future (2011-2040) showed a tendency to increase in flows. The average flow of long period, for example, introduced an amendment to 141.6 m³ / s (1961-1990) to 200.3 m³ / s (2011-2040). We observe an increase in the average flow and monthly standard deviation between January and October. The percentage increase in the monthly average flow was more pronounced between the months of February and June, exceeding the rate of 100%. Considering the confidence intervals of the estimates of flow for the future, it can be concluded that there is an increasing trend in hydrological variability in the period between 2011 and 2040, which indicates the possibility of time series with more severe periods of drought and flood. We found an increasing trend of irrigated agricultural activities above the trend towards livestock and human consumption. If the trend and residues modeled between 2003 and 2010 is maintained, irrigated areas in 2040 should reach 1,954 km², increasing water demand of 6.3 m³ / s (2011) to 28 m³ / s (2040), in the month of higher water demand (in January). The final step is to calculate the ratio between the demand for consumptive uses and water availability (demand / availability), we observe an increasing trend in the percentage in the period between 2011 and 2040. On average, the demand / availability in 2011 was only 6.06%, with values between 0.81% (May) to 20.15% (December). By 2040, this proportion increased to 13.82%, with values between 1.09% (May) to 43.3% (December). Finally, with regard to changes in the curves obtained for regularization by simulating the water balance in a fictitious reservoir, the results show that there is a need for reservoirs with increasing capacity to meet the demand for consumptive uses, upon confirmation of the scenario climate change used, because of worsening drought in early summer.
557

Aplicação de redes neurais artificiais na modelagem de canais de radiopropagação para o Sistema Brasileiro de TV Digital

Pereira, Ariston Leite January 2017 (has links)
Orientador: Prof. Dr. Ivan Roberto Santana Casella / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Elétrica, 2017. / Com o desligamento das transmissoes do sinal de TV analogica e o crescimento de novas instalações do sinal de TV digital em todo territorio nacional para os proximos anos, existe a necessidade de um conhecimento mais aprofundado das caractersticas dos canais de propagação, possibilitando a implantação desses novos sistemas de forma mais otimizada e efciente. Os modelos de propagação propostos para o Sistema Brasileiro de TV Digital seguem recomendações nacionais e internacionais baseadas nos modelos de propagação de larga escala, propostos na literatura cientifica. Contudo, em algumas situaçõess, esses modelos não caracterizam com precisão a propagação da onda eletromagnetica na comunicação entre o transmissor e o receptor, devido aos fenomenos de propagação e interferencias que degradam o sinal. Assim sendo, aplicou-se nesse projeto 03 tecnicas de Redes Neurais Artificiais como aproximadores de funções: Perceptron Multicamadas, Redes de Funções de Base Radial e Rede Neurais com Regressão Generalizada, sendo treinadas com os dados coletados de um levantamento de campo dos canais abertos de TV digital na cidade de São Paulo. Apos a fase de treinamento e utilizando metodos de otimização adequados para redução de overfitting, as melhores configurações de Redes Neurais Artificiais foram analisadas com resultados de saída mais adequados para representar o canal de propagação para o sistema de TV digital e resultados generalizados para diferentes distancias, frequencias e alturas foram gerados. Por fim, uma analise estatistica foi realizada comparando os valores de saida das Redes Neurais Artificiais, com valores praticos do levantamento de campo e os resultados teoricos calculados atraves dos modelos de propagação classicos da literatura cientifica, sinalizando que o uso das tecnicas de Redes Neurais Artificiais é possível na predição de canal de propagação com relativa eficiência de resultados. / With the switch-off of the analogue TV signal transmissions and the new digital TV signal installations throughout the national territory for the next years, there is a need for a more in-depth knowledge of the characteristics of the propagation channels, enabling the deployment of these new systems in a more optimized and eficient way. The propagation models proposed for the Brazilian Digital TV System follow national and international recommendations based on the large scale propagation models proposed in the scientific literature. However, in some situations, these models do not accurately characterize the propagation of the electromagnetic wave in the communication between the transmitter and the receiver, due to propagation phenomena and interferences that degrade the signal. Thus, we applied in this project 03 techniques of Artificial Neural Networks as approximations of functions: Multi layer Perceptron, Radial Base Functions Networks and Generalized Regression Neural Network, being trained with data collected from a field survey of open channels of digital TV in the city of S~ao Paulo. After the training phase and using appropriate optimization methods to reduce overfitting, the best configurations of Artificial Neural Networks were analyzed with better output results to represent the propagation channel for the digital TV system and generalized results for diferent distances, Frequencies and heights of the profiles were generated. Finally, a statistical analysis was performed comparing the output values of the Artificial Neural Networks with practical values of the field survey and the theoretical results calculated through the classical propagation models of the scientific literature, signaling that the use of Artificial Neural Networks techniques is possible in the prediction of propagation channel with relative eficiency of results.
558

Um problema inverso em dois passos para estimação de perfis de temperatura na atmosfera com nuvens a partir de medidas de radiância feitas por satélite / A two step inverse problem to retrieve vertical temperature profile in the atmosphere with clouds from radiance measurements made by satellite

Patricia Oliva Soares 04 January 2013 (has links)
Esta tese tem por objetivo propor uma metodologia para recuperação de perfis verticais de temperatura na atmosfera com nuvens a partir de medidas de radiância feitas por satélite, usando redes neurais artificiais. Perfis verticais de temperatura são importantes condições iniciais para modelos de previsão de tempo, e são usualmente obtidos a partir de medidas de radiâncias feitas por satélites na faixa do infravermelho. No entanto, quando estas medidas são feitas na presença de nuvens, não é possível, com as técnicas atuais, efetuar a recuperação deste perfil. É uma perda significativa de informação, pois, em média, 20% dos pixels das imagens acusam presença de nuvens. Nesta tese, este problema é resolvido como um problema inverso em dois passos: o primeiro passo consiste na determinação da radiância que atinge a base da nuvem a partir da radiância medida pelos satélites; o segundo passo consiste na determinação do perfil vertical de temperaturas a partir da informação de radiância fornecida pelo primeiro passo. São apresentadas reconstruções do perfil de temperatura para quatro casos testes. Os resultados obtidos mostram que a metodologia adotada produz resultados satisfatórios e tem grande potencial de uso, permitindo incorporar informações sobre uma região mais ampla do globo e, consequentemente, melhorar os modelos de previsão do tempo. / This thesis presents a methodology for retrieving vertical temperature profiles in the atmosphere with clouds from radiance measurements made by satellite, using artificial neural networks. Vertical temperature profiles are important initial conditions for numerical weather prediction models, and are usually obtained from measurements of radiance using infrared channels. Though, when these measurements are performed in the atmosphere with clouds, it is not possible to retrieve the temperature profile with current techniques. It is a significant loss of information, since on average 20% of the pixels of the images have clouds. In this thesis, this problem is solved as a two-step inverse problem: the first step is an inverse problem of boundary condition estimation, where the radiance reaching the cloud basis is determined from radiance measured by satellite; the second step consists in determining the vertical temperature profile from the boundary condition estimated in the first step. Reconstructions of temperature profile are presented for four test cases. The results show that the proposed methodology produces satisfactory results and has great potential for use, allowing to incorporate information from a wider area of the planet and thus to improve numerical weather prediction models.
559

Extração e reconhecimento de caracteres ópticos a partir do co-projeto de hardware e software sobre plataforma reconfigurável / Extraction and recognition of optical characters based on hardware and software co-design over reconfigurable platform

Dessbesell, Gustavo Fernando 07 March 2008 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / This work presents the implementation and analysis of a system devoted to the extraction and recognition of optical characters which is based on the hardware and software co-design methodology and built over a reconfigurable platform. Since vision is a very important sense, the research in the field of artificial vision systems has been carried out since the very beginning of the digital era, in the early 60 s. Taking into account the recent evolution experienced by the configurable computing area, a new tendency of research and development of heterogeneous artificial vision systems emerges. Among the main benefits provided by the so called systems on chip are the reduction of power dissipation, financial costs and physical area. In this sense, taking a License Plate Recognition System (LPRS) as a case study, the focus of this work is the implementation of the character localization and recognition steps, while the partitioning of hardware and software resources is based in costbenefit heuristics. Initially, a software-only version of the system is build over an x86 platform. More than to allow the evaluation of several character localization related methods, this software-only version is also intended to be used as parameter of comparison for the embedded version of the system. Regarding the character recognition step, it is performed by the means of an Artificial Neural Network. Based on the results provided by the software-only evaluation system, the implementation of the embedded version is performed, considering an FPGA as platform. In this embedded version, the character localization step consists of a dedicated hardware block, while the character recognition step comprises a piece of software executed in a microprocessor that is physically implemented inside the FPGA. Taking into account a 10 times higher frequency of operation for the processor of the x86 platform, as well as the fact that most of the embedded hardware block employs a clock frequency smaller or equal to 25 MHz, the most noticeable result is the 2.25 times faster speed of processing achieved by the embedded version. Regarding the plate recognition capability, both systems have the same performance, being able to successfully recognize plates in 51.62 % of the cases (considering the best case). Beyond LPRSs, the system developed here could also be employed to build other applications that require optical character recognition features, such as automatic traffic signs recognition and serial number reading of items in a production line. / Este trabalho apresenta a implementação e análise de um sistema voltado à extração e reconhecimento de caracteres ópticos a partir do co-projeto de hardware e software sobre uma plataforma reconfigurável. Por conta da importância atribuída ao sentido da visão, sistemas artificiais capazes de emular as tarefas envolvidas neste processo biológico têm sido alvo de pesquisas desde o surgimento dos primeiros computadores digitais, na década de 60. Tendo em vista a recente evolução experimentada na área da computação configurável, surge uma tendência natural à pesquisa e desenvolvimento de sistemas heterogêneos (compostos por uma combinação de blocos de hardware e software) de visão artificial baseados em tal plataforma. Dentre os principais benefícios proporcionados por sistemas em chip podem ser citados a redução no consumo de potência, custos financeiros e área física. Neste sentido, tomando como estudo de caso um Sistema de Reconhecimento de Placas de Licenciamento Veicular (SRPLV), o foco do trabalho está situado na implementação das etapas de localização e reconhecimento de caracteres, sendo o particionamento dos blocos de hardware e software baseado em heurísticas de custo-benefício. Inicialmente é realizada a implementação de uma versão totalmente em software do sistema aqui proposto, sobre plataforma x86, no intuito de avaliar os diversos métodos passíveis de implementação, bem como o de possibilitar um parâmetro de comparação com a versão embarcada do sistema. Os métodos avaliados dizem respeito à etapa de localização de caracteres, haja vista a definição à priori do emprego de Redes Neurais Artificiais no reconhecimento dos mesmos. A partir dos resultados obtidos por esta avaliação é realizada a implementação da versão embarcada do sistema, tendo como plataforma um FPGA. Nesta versão, a etapa de localização de caracteres é implementada como um bloco dedicado de hardware, enquanto a de reconhecimento constitui-se num software executado sobre um microprocessador fisicamente embutido no interior do FPGA. Considerando uma freqüência de operação 10 vezes superior para o processador da plataforma x86, bem como o fato da maior parte do hardware embarcado utilizar um clock menor ou igual a 25 MHz, o principal resultado consiste no ganho de 2,25 vezes no tempo de execução obtido na segunda versão do sistema. No tocante à capacidade de reconhecimento de placas, os sistemas são equivalentes, sendo capazes de reconhecê-las corretamente em 51,62% das vezes, no melhor caso. Além de SRPLVs, o sistema aqui desenvolvido pode ser empregado na criação de outras aplicações que envolvam a problemática do reconhecimento de caracteres óticos, como reconhecimento automático de placas de trânsito e do número de série de itens numa linha de produção.
560

Uso de inteligência artificial para estimativa da capacidade de suporte de carga do solo / Use of artificial intelligence to soil load support capacity estimate

Pereira, Tonismar dos Santos 13 February 2017 (has links)
The knowledge of the relationships between physical and mechanical properties of the soil may contribute to the development of pedotransfer functions (PTFs), to estimate other soil properties are difficult to measure. The objectives of this work were to estimate the preconsolidation pressure and soil resistance to penetration, using predictive methodologies, using data available in the literature, with physical-hydrological and mineralogical characteristics of soils. The development of PTFs was based on three modeling methods: (i) multiple linear regression (MLR), (ii) artificial neural networks (ANNs) and (iii) support vector machines (SVM). The first proposed methodology for the development of PTFs was the stepwise option of the IBM-SPSS 20.0® software. The models generated from the second methodology, ie RNA were implemented through the multilayer perceptron with backpropagation algorithm and Levenberg-Marquardt optimization of Matlab®2008b software, with variations of the number of neurons in the input layer and number of neurons In the middle layer. The third methodology was to generate PTFs from SVM that fit within the data mining process by exercising the Waikato Environment for Knowledge Analysis software (RapidMiner 5). The SVM training was performed by varying the number of input data, the kernel function and coefficients of these functions. Once the estimates were made, the performance indices (id) and classified according to Camargo and Sentelhas (1997) were calculated, thus comparing the methods between themselves and others already established. The obtained results showed that artificial intelligence models (RNA and MVS) are efficient and have predictive capacity superior to the established models, in data conditions of soils with textural classes and diverse managements, and similar, although with higher performance index values for Conditions of soils of the same textural class exposed to the same management. / O conhecimento das relações entre propriedades físicas e mecânicas do solo pode contribuir no desenvolvimento de funções de pedotransferência (FPTs), que permitam estimar outras propriedades do solo de difícil mensuração. Os objetivos deste trabalho foram estimar a pressão de preconsolidação e a resistência do solo à penetração, com o uso de metodologias de predição, utilizando-se de dados disponíveis na literatura, com valores de características físico-hídricas e mineralógicas dos solos. Os valores estimados foram obtidos a partir de três métodos de modelagem: (i) regressão linear múltipla (RLM), (ii) redes neurais artificiais (RNA) e (iii) máquinas de vetores de suporte (MVS). A primeira metodologia proposta para o desenvolvimento dos modelos preditivos foi a opção stepwise do software IBM-SPSS 20.0®. Os modelos geradas a partir da segunda metodologia, ou seja, das RNA foram implementadas através do perceptron multicamadas com algoritmo backpropagation e otimização Levenberg-Marquardt do software Matlab®2008b, efetuando-se variações do número de neurônios na camada de entrada e número de neurônios na camada intermediária. A terceira metodologia foi gerar FPTs a partir de MVS que se enquadra dentro dos processos de mineração de dados utilizando para tal o software Waikato Environment for Knowledge Analysis® (RapidMiner 5). O treinamento das MVS foi realizado variando-se o número de dados de entrada, a função kernel e coeficientes destas funções. Realizadas as estimativas, foram calculados os índices de desempenho (id) e classificados segundo Camargo e Sentelhas (1997), podendo-se assim comparar os métodos entre si e a outros já consagrados. Os resultados obtidos mostraram que modelos de inteligência artificial (RNA e MVS) são eficientes e possuem capacidade preditiva superior aos modelos consagrados, em condições de dados de solos com classes texturais e manejos diversos, e semelhantes ainda que com valores de índice de desempenho superiores para condições de solos de mesma classe textural expostos ao mesmo manejo.

Page generated in 0.1084 seconds