• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 772
  • 11
  • 8
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 795
  • 795
  • 795
  • 551
  • 527
  • 460
  • 132
  • 121
  • 117
  • 107
  • 93
  • 69
  • 59
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Desenvolvimento de modelos neurais para o processamento de sinais acústicos visando a medição de propriedades topológicas em escoamentos multifásicos / Development of neural models for the processing of acoustic signals aiming at the measurement of topological properties in multi-phase flow

Nascimento, Érica Regina Filletti 15 February 2007 (has links)
Uma nova metodologia para a medida não intrusiva da fração volumétrica e da área interfacial é proposta neste trabalho, com base em redes neurais para processar respostas obtidas de sinais acústicos. A distribuição geométrica das fases dentro do escoamento é mapeada pela velocidade local de propagação acústica, considerada na equação diferencial que governa o problema. Esta equação é resolvida numericamente pelo método de diferenças finitas com as condições de contorno reproduzindo a estratégia de pulso/eco. Um número significativo de distribuições das velocidades de propagação foi considerado na solução da equação diferencial para construir uma base de dados, da qual os parâmetros da rede podem ser ajustados. Especificamente, o modelo neural é construído para mapear características extraídas dos sinais obtidos de quatro sensores acústicos, localizados no contorno externo do domínio de sensoriamento, estimando a fração volumétrica e a área interfacial correspondentes. Estas características correspondem às amplitudes e aos tempos de chegada dos três maiores picos da onda acústica. Os resultados numéricos mostram que o modelo neural pode ser treinado em um tempo computacional razoável e é capaz de estimar os valores da fração volumétrica e da área interfacial dos exemplos do conjunto de teste. / A new methodology for measuring the volumetric fraction and interfacial area in two-phase flows is proposed in this work, based on neural network for processing the responses obtained from an acoustic interrogation signal. The geometrical distribution of the phases within the flow is mapped by the local acoustic propagation velocity which is considered in the governing differential equation. This equation is solved numerically by the finite difference method with boundary conditions reproducing the pulse/echo strategy. A significant number of propagation velocities distributions were considered in the solution of the differential equation in order to construct a database from which the neural model parameters could be adjusted. Specifically, the neural model is constructed to map the features extracted from the signals delivered by four acoustic sensors, placed on the external boundary of the sensing domain, into the corresponding volumetric fraction and interfacial area. These features correspond to the amplitudes and the times of arrival on the three first peaks of the acoustic wave. Numerical results showed that the neural model can be trained in a reasonable computational time and it is capable of estimating the values of the volumetric fraction and the interfacial area of examples of the set of test.
502

Redes neurais artificiais como procedimento para retroanálise de pavimentos flexíveis / Artificial neural networks as a backcalculation procedure flexible pavements

Coutinho Neto, Benedito 26 April 2000 (has links)
Este trabalho investiga um procedimento para retroanálise utilizando Redes Neurais Artificiais (RNAs). Nesta pesquisa foram utilizadas 35.472 bacias de deflexões hipotéticas, criadas pelo programa ELSYM5. A base de dados de treinamento das RNAs consistiu dessas bacias de deflexão e dos módulos e espessuras que as geraram. A camada de entrada das RNAs foi compostas da(s) espessura(s) da(s) camada(s) do pavimento, da bacia de deflexão (na simulação com a viga Benkelman, além desses parâmetros, incluiu-se o raio de curvatura (R)) e a camada de saída foi composta pelos módulos resilientes das camadas do pavimento. Esses dados serviram de entrada para o processo de aprendizagem, utilizando-se o simulador EasyNN 3.2, que se baseia em redes Multilayer Perceptron e no algoritmo de treinamento Backpropagation. Para o procedimento de retroanálise proposto foram implementadas seis RNAs: duas simulando o procedimento para pavimento de duas camadas (uma simulando o ensaio da viga Benkelman e a outra a do Falling Weight Deflectometer), duas para pavimento de três camadas (simulação com os mesmos aparelhos) e duas para pavimento de quatro camadas (simulando os ensaios descritos anteriormente). Mediante as regressões lineares entre os módulos reais (ELSYM5) e os previstos pela RNA, obtiveram-se coeficientes de determinação (R2) e erros médios relativos (EMR). Estes parâmetros demonstraram uma boa correlação linear entre os módulos reais (ELSYM5) e os previstos (RNA). Com os resultados obtidos, conclui-se que as RNAs são ferramentas potentes para serem utilizadas como procedimento de retroanálise para pavimentos flexíveis de duas, três e quatro camadas. / This paper investigates a backcalculation procedure using Artificial Neural Networks (ANNs). In the research 35,472 hypothetical deflection basins were used, created by the program ELSYM5. The ANNs training database consisted of these basins, and of the moduli and thickness used to generate them. The input layer of these ANNs was composed by thickness(es) of the pavement layer(s), the deflection basin (in the simulation with the Benkelman beam, beyond of those parameters, the curvature radius included (R)) and the output layer was composed by the resilient moduli of the layers of the pavement. Those data were used as output for the learning process, using the easyNN 3.2 simulator, which is based on Multilayer Perceptron and in the training algorithm Backpropagation. For the backcalculation procedure proposed six ANNs they were implemented: two simulating the procedure for pavement of two layers (a simulating the testing of the Benkelman beam and the other the one of Falling Weight Deflectometer), two for pavement of three layers (simulation with the same equipments) and two for pavement of for layers (simulating the testing described previously). The values founds throught linear regression between the real moduli (ELSYM5) and the predicted of ones for ANN, were obtained determination coefficients (R2) and relative average errors (EMR). These parameters demonstrated a good linear correlation between the real moduli (ELSYM5) and the predicted of ones (ANN). The conclusion .is that ANNs are potent tools for they be used in backcalculation procedures flexible pavements of two, three and four layers.
503

Predição de qualidade de experiência em redes wimax em aplicações de video baseada em aspectos de qualidade de serviço

OLIVEIRA, Rosinei de Sousa 02 July 2011 (has links)
Submitted by Samira Prince (prince@ufpa.br) on 2012-09-24T17:03:07Z No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_PredicaoQualidadeExperiencia.pdf: 2330802 bytes, checksum: 50bcb0f2191549e093e966dc9f3a974e (MD5) / Approved for entry into archive by Ana Rosa Silva(arosa@ufpa.br) on 2012-09-26T14:44:29Z (GMT) No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_PredicaoQualidadeExperiencia.pdf: 2330802 bytes, checksum: 50bcb0f2191549e093e966dc9f3a974e (MD5) / Made available in DSpace on 2012-09-26T14:44:29Z (GMT). No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_PredicaoQualidadeExperiencia.pdf: 2330802 bytes, checksum: 50bcb0f2191549e093e966dc9f3a974e (MD5) Previous issue date: 2011 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A crescente utilização dos serviços de telecomunicações principalmente sem fio tem exigido a adoção de novos padrões de redes que ofereçam altas taxas de transmissão e que alcance um número maior de usuários. Neste sentido o padrão IEEE 802.16, no qual é baseado o WiMAX, surge como uma tecnologia em potencial para o fornecimento de banda larga na próxima geração de redes sem fio, principalmente porque oferece Qualidade de Serviço (QoS) nativamente para fluxos de voz, dados e vídeo. A respeito das aplicações baseadas vídeo, tem ocorrido um grande crescimento nos últimos anos. Em 2011 a previsão é que esse tipo de conteúdo ultrapasse 50% de todo tráfego proveniente de dispositivos móveis. Aplicações do tipo vídeo têm um forte apelo ao usuário final que é quem de fato deve ser o avaliador do nível de qualidade recebida. Diante disso, são necessárias novas formas de avaliação de desempenho que levem em consideração a percepção do usuário, complementando assim as técnicas tradicionais que se baseiam apenas em aspectos de rede (QoS). Nesse sentido, surgiu a avaliação de desempenho baseada Qualidade de Experiência (QoE) onde a avaliação do usuário final em detrimento a aplicação é o principal parâmetro mensurado. Os resultados das investigações em QoE podem ser usados como uma extensão em detrimento aos tradicionais métodos de QoS, e ao mesmo tempo fornecer informações a respeito da entrega de serviços multimídias do ponto de vista do usuário. Exemplos de mecanismos de controle que poderão ser incluídos em redes com suporte a QoE são novas abordagens de roteamento, processo de seleção de estação base e tráfego condicionado. Ambas as metodologias de avaliação são complementares, e se usadas de forma combinada podem gerar uma avaliação mais robusta. Porém, a grande quantidade de informações dificulta essa combinação. Nesse contexto, esta dissertação tem como objetivo principal criar uma metodologia de predição de qualidade de vídeo em redes WiMAX com uso combinado de simulações e técnicas de Inteligência Computacional (IC). A partir de parâmetros de QoS e QoE obtidos através das simulações será realizado a predição do comportamento futuro do vídeo com uso de Redes Neurais Artificiais (RNA). Se por um lado o uso de simulações permite uma gama de opções como extrapolação de cenários de modo a imitar as mesmas situações do mundo real, as técnicas de IC permitem agilizar a análise dos resultados de modo que sejam feitos previsões de um comportamento futuro, correlações e outros. No caso deste trabalho, optou-se pelo uso de RNAs uma vez que é a técnica mais utilizada para previsão do comportamento, como está sendo proposto nesta dissertação. / The increasing use of telecommunications services mainly wireless has demanded the adoption of new networking standards that offer higher data rates and reach a larger number of users. In this sense the IEEE 802.16 standard, which is based WiMAX emerges as a potential technology for providing broadband in the next generation of wireless networks, mainly because it offers Quality of Service (QoS) for voice streams natively, data and video. Regarding the video-based applications, there has been a steady growth in recent years. In 2011 it is expected that this type of content exceeds 50% of all traffic from mobile devices. Applications like video have a strong appeal to the end user who is who in fact should be the evaluator's level of perceived quality. Given this, we need new forms of performance assessment that take into account the perception of the user, thereby complementing traditional techniques that rely only on network aspects (QoS). In this sense, there was the performance evaluation based on Quality of Experience (QoE) assessment where the end user rather than the application is the main parameter measured. The results of investigations QoE can be used as an extension over the traditional methods of QoS, and at the same time provide information regarding the delivery of multimedia services from the viewpoint of the user. Examples of control mechanisms that may be included in networks that support new approaches are QoE routing process of selecting the base station and traffic conditioning. Both methods of evaluation are complementary, and if used in combination can generate a more robust assessment. However, the large amount of information hinders this combination. In this context, this paper's main objective is to create a methodology to predict video quality WiMAX networks with combined use of simulation techniques and Computational Intelligence (CI). From QoS and QoE parameters obtained from the simulations will be performed to predict the future behavior of the video with the use of Artificial Neural Networks (ANN). On the one hand the use of simulations allows a range of options such as extrapolation of scenarios to mimic the same real-world situations, the IC techniques allow faster analysis of the results so that they are made predictions of future behavior, correlations and others. In the case of this work, we chose to use RNA as it is the most used technique to predict the behavior, as is being proposed in this dissertation.
504

Análise de modelo de Hopfield com topologia de rede complexa / Investigation of the Hopfield model with complex network topology

Fabiano Berardo de Sousa 13 November 2013 (has links)
Redes neurais biológicas contêm bilhões de células (neurônios) agrupadas em regiões espacial e funcionalmente distintas. Elas também apresentam comportamentos complexos, tais como dinâmicas periódicas e caóticas. Na área da Inteligência Artificial, pesquisas mostram que Redes Neurais Caóticas, isto é, modelos de Redes Neurais Artificiais que operam com dinâmicas complexas, são mais eficientes do que modelos tradicionais no que diz respeito a evitar memórias espúrias. Inspirado pelo fato de que o córtex cerebral contém agrupamentos de células e motivado pela eficiência no uso de dinâmicas complexas, este projeto de pesquisa investiga o comportamento dinâmico de um modelo de Rede Neural Artificial Recorrente, como o de Hopfield, porém com a topologia sináptica reorganizada a ponto de originar agrupamentos de neurônios, tal como acontece em uma Rede Complexa quando esta apresenta uma estrutura de comunidades. O modelo de treinamento tradicional de Hopfield também é alterado para uma regra de aprendizado que posta os padrões em ciclos, gerando uma matriz de pesos assimétrica. Resultados indicam que o modelo proposto oscila entre comportamentos periódicos e caóticos, dependendo do grau de fragmentação das sinapses. Com baixo grau de fragmentação, a rede opera com dinâmica periódica, como consequência da regra de treinamento utilizada. Dinâmicas caóticas parecem surgir quando existe um alto grau de fragmentação. Mostra-se, também, que é possível obter caoticidade em uma topologia adequadamente modular, ou seja, como uma estrutura de comunidades válida. Desta forma, este projeto de pesquisa provê uma metodologia alternativa para se construir um modelo de Rede Neural Artificial que realiza tarefas de reconhecimento de padrões, explorando dinâmicas complexas por meio de uma estrutura de conexões que se mostra mais similar à topologia existente no cérebro / Biological neural networks contain billions of neurons divided in spatial and functional clusters to perform dierent tasks. It also operates with complex dynamics such as periodic and chaotic ones. It has been shown that Chaotic Neural Networks are more efficient than conventional recurrent neural networks in avoiding spurious memory. Inspired by the fact that the cerebral cortex has speficic groups of cells and motivated by the efficiency of complex behaviors, in this document we investigate the dynamics of a recurrent neural network, as the Hopfield one, but with neurons coupled in such a way to form a complex network community structure. Also, we generate an asymmetric weight matrix placing pattern cycles during learning. Our study shows that the network can operate with periodic and chaotic dynamics, depending on the degree of the connection\'s fragmentation. For low fragmentation degree, the network operates with periodic dynamic duo to the employed learning rule. Chaotic behavior seems to rise for a high fragmentation degree. We also show that the neural network can hold both chaotic dynamic and a high value of modularity measure at the same time, indicating an acceptable community structure. These findings provide an alternative way to design dynamical neural networks to perform pattern recognition tasks exploiting periodic and chaotic dynamics by using a more similar topology to the topology of the brain
505

Aplicação de redes neurais artificiais na proteção de distância / Artificial neural networks applied to distance protection

Mário Oleskovicz 19 December 2001 (has links)
O presente trabalho visa apresentar um modelo alternativo e completo de proteção para linhas de transmissão utilizando-se de Redes Neurais Artificiais (RNAs). Pela aplicação, busca-se um modelo que venha a realizar a detecção do defeito, a classificação quanto ao tipo de falta ocorrida e a localização da mesma no que diz respeito à verificação das zonas de proteção em um menor tempo se comparado com as propostas convencionais. As grandezas analisadas referem-se a valores amostrados de tensões e correntes do sistema elétrico, cujos valores foram obtidos através de simulações computacionais utilizando o software Alternative Transientes Program (ATP). O desenvolvimento do trabalho está dividido em módulos, que dizem respeito à implementação das arquiteturas para a detecção, classificação e a localização da falta. Ressalta-se que o objetivo de treinar os módulos foi o de se obter arquiteturas de RNAs fixas (software NeuralWorks), as quais representam todo o conhecimento armazenado do sistema de proteção. Com estas arquiteturas fixas, através de um algoritmo computacional apropriado e implementado na linguagem de programação \"C\", pode-se então obter as respostas sobre todas as prováveis condições de operação do sistema de transmissão. Os resultados alcançados pela aplicação deste modelo alternativo de proteção ilustram que o desempenho global das arquiteturas de RNAs é altamente satisfatório e condizente para uma possível aplicação prática. Deve ser enfatizado que o esquema proposto se mostra altamente preciso, com alta velocidade de atuação, apresentando características bastante desejáveis para um sistema de proteção moderno. Deve ser mencionado que esta pesquisa foi desenvolvida em cooperação com o Departamento de Engenharia Elétrica e Eletrônica da Universidade de Bath/Inglaterra. / This work presents an alternative Artificial Neural Network (ANN) approach to simulate a complete scheme for a transmission line protection. From this application, we intend to obtain a complete model to detect the fault, to classify the fault type occurred and to locate it on the protection zones as quickly as possible when compared to conventional approaches. The voltage and current sampled values from the electric power system are analyzed and they are generated by computational simulation using the Alternative Transients Program (ATP) software. In order to perform the simulation, the study was subdivided into different neural network modules for fault detection, fault classification as well as fault location. It should be pointed out that the modules training objective was to obtain the appropriate fixed ANNs architectures (software NeuralWorks), which represent all stored knowledge from the protection system operation. With these fixed architectures, by an appropriate computational algorithm implemented in a C code language, all expected correct responses described above for different operation conditions can be obtained. The results obtained by application of this alternative protection approach, show that the global performance of the ANNs architecture was highly satisfactory and suitable to a practical application. It should be emphasized that the scheme proposed is highly precise with high speed of response, showing desirable characteristics to a modern protection system. It should be mentioned that this research was developed in cooperation with the Department of Electronic and Electrical Engineering - University of Bath/England.
506

Projeto diferencial de geradores síncronos: o uso de redes neurais artificiais para identificação e correção da saturação dos transformadores de corrente / Differential protection for synchronous generators: the use of artificial neural networks for identification and correction of the saturation of current transformers.

Rogério Cesar Serapião Silva 09 March 2012 (has links)
Este trabalho tem como objetivo apresentar um algoritmo de proteção diferencial de geradores baseado em Redes Neurais Artificiais (RNAs), que seja robusto e confiável em situações onde os algoritmos padrões podem apresentar dificuldades, como no caso, da saturação de TCs. O algoritmo desenvolvido é constituído por dois módulos principais: a) um módulo de detecção da saturação dos transformadores de corrente (TCs) empregados na proteção diferencial de geradores e; b) um módulo de correção das formas de onda distorcidas devido à saturação dos TCs. Os módulos utilizam RNAs para detectar e corrigir situações onde haja saturação dos TCs, a fim de evitar a má operação da proteção diferencial. O algoritmo foi desenvolvido em ambiente Matlab e validado com base nos dados da modelagem e simulações de um sistema elétrico utilizando o software Alternative Transients Program (ATP). / This work has as objective to present an algorithm for differential protection of generators based on Artificial Neural Networks (ANN), which is robust and reliable in situations where standard algorithms fail, as in the case of Current Transformer (CT) saturation. The algorithm developed consists of two main modules: a) a module to detect saturation of CTs used in differential protection of generators and; b) module to correct distorted waveforms due to CT saturation. The modules use ANNs to detect and correct situations where there is saturation of CTs in order to avoid misoperation of the differential protection. The algorithm was developed using Matlab software and validated based on data modeling and simulations of a power system using the Alternative Transients Program (ATP) software.
507

Algoritmo híbrido e inteligente para o diagnóstico das condições operativas de  transformadores de potência no contexto da qualidade da energia elétrica / Hybrid intelligent algorithm for the diagnosis of operating conditions of power transformers in the context of power quality

Jáder Fernando Dias Breda 12 July 2012 (has links)
Esta pesquisa teve como objetivo o desenvolvimento de um algoritmo computacional capaz de diagnosticar as condições operativas de transformadores de potência. As variáveis tomadas como base para classificar as condições apresentadas se referem às usualmente empregadas pela lógica de proteção diferencial, ou seja, a corrente diferencial e o conteúdo harmônico presente nos sinais em análise. Além disto, foi também verificada a relação entre alguns dos fenômenos associados à falta de qualidade da energia elétrica originados pelos consumidores conectados no secundário e refletidos ao primário do transformador. O algoritmo desenvolvido utilizou-se da Transformada Wavelet e de técnicas de inteligência artificial (Lógica Fuzzy e Redes Neurais Artificiais), com o objetivo de inferir sobre os relacionamentos supracitados. Todos os testes para validação da metodologia proposta foram realizados dispondo de um sistema elétrico simulado no software ATP (Alternative Transients Program). Os resultados encontrados denotam que, frente às condições analisadas, correntes diferenciais e conteúdo harmônico indesejado podem vir a surgir, fazendo com que a lógica implementada venha a diagnosticar erroneamente a condição de operação enfrentada. Os resultados avaliam ainda a propagação destas condições do secundário para o primário do transformador em análise. / This research aimed to develop an algorithm able to diagnose the operating conditions of power transformers. The variables considered to classify the presented conditions were the normally used by differential protection logic, i.e., the differential current and the harmonic content in the signals in analysis. Moreover, the relationship between some phenomena associated to a poor power quality originated from consumers connected to the secondary and reflect to the primary side of the transformer was also verified. In order to infer the relationships above mentioned, the developed algorithm used the Wavelet Transform and artificial intelligence techniques (Fuzzy Logic and Artificial Neural Networks). All the tests applied to validate the proposed methodology were performed making use of the ATP (Alternative Transients Program). In face of the analyzed conditions, the results show that differential currents and undesired harmonic content can arise and the implemented logic will erroneously diagnose the operation condition addressed. The results also illustrate the propagation of these conditions from secondary to primary side of the analyzed transformer.
508

Smart meter integrado a analisador de qualidade de energia para propósitos de identificação de cargas residenciais / Smart meter integrated to power quality analyzer for identification purposes of residential loads

Sergio Date Fugita 20 November 2014 (has links)
Este trabalho consiste em apresentar o desenvolvimento de um Smart meter, integrado a um analisador de qualidade de energia, para análise de distorções harmônicas, utilizando método de redes neurais artificiais embarcado em hardware. Tal Smart meter está incluído dentro dos conceitos de Smart Grid, que serão apresentados também neste trabalho. O intuito do desenvolvimento do Smart meter para análise de distorções harmônicas é auxiliar concessionárias de energia elétrica a identificar que tipo de carga o consumidor utiliza em sua residência, a fim de contribuir para a tomada de decisões apropriadas, tais como a diminuição da emissão de correntes harmônicas, demanda de energia, detecção de falhas no fornecimento de energia elétrica e faturas diferenciadas de acordo com a quantidade de harmônicas injetadas na rede elétrica. Adicionalmente, observou-se que o Smart meter desenvolvido pode ser ainda utilizado para detectar fenômenos de VTCD, como elevação, afundamento e interrupção de energia. Todo o processo de desenvolvimento do Smart meter é apresentado no decorrer desta tese de doutorado. / This thesis consists to present the development of a Smart Meter integrated to power quality analyzer for the analysis of harmonic distortion, using methods based on artificial neural networks in embedded hardware. This Smart Meter is included within the concepts of Smart Grid, which will be also presented in this work. The intention of the development of the Smart Meter for analysis of harmonic distortion is to assist utilities companies to identify what loads type the consumer uses at your residence in order to contribute for supporting decisions, such as reducing the emission of the harmonic currents, power demand and faults detection in electric energy supply and distinct bills according to the amount of harmonics injected into the power grid. In addition, it was observed that this developed Smart Meter can be even used to detect the VTCD phenomena, such as swell, sag and interruption of the energy supply. All development steps of this Smart Meter is presented in this doctoral thesis.
509

Sistema de visÃo computacional para a caracterizaÃÃo da grafita usando microfotografias / System of computational vision for the characterization of the graphite using microphotographies

Victor Hugo Costa de Albuquerque 06 October 2007 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / A Ãrea de CiÃncia dos Materiais utiliza sistemas de VisÃo Computacional para determinar tamanho e/ou quantidade de grÃos, controle de soldagem, modelamento de elementos de ligas, entre outras. O presente trabalho tem como principal objetivo desenvolver e validar o programa SVRNA (SegmentaÃÃo de Microestruturas por VisÃo Computacional Baseada em Rede Neural Artificial), que, combinado com Rede Neural Artificial, utiliza tÃcnicas de morfologia matemÃtica para realizar a segmentaÃÃo dos constituintes do ferro fundido branco de forma semi-automÃtica e a classificaÃÃo automÃtica da grafita nos ferros fundidos nodular, maleÃvel e cinzento. Os resultados da segmentaÃÃo e quantificaÃÃo destes materiais sÃo comparados entre o SVRNA e um programa comercial bastante utilizado neste domÃnio. A anÃlise comparativa entre estes mÃtodos mostra que o SVRNA apresenta melhores resultados. Conclui-se, portanto, que o sistema proposto pode ser utilizado em aplicaÃÃes na Ãrea da CiÃncia dos Materiais para a segmentaÃÃo e quantificaÃÃo de constituintes em materiais metÃlicos, reduzindo o tempo de anÃlise e obtendo resultados precisos. / CATERIALS Sciences field uses Computational Vision systems to determine size and/or amount of grains, welding control, modeling of alloy elements, among other. The present paper has as main objective to develop and validate the SVRNA system (Microstructure Segmentation for Computational Vision based on Artificial Neural Networks), which, combined with ArtiÂcial Neural Network, uses mathematical morphology technics to accomplish the constituent segmentations from white cast iron of semi-automatic form, and graphite automatic classiÂcation from nodular, malleable and gray cast iron. Segmentation and quantiÂcation results of this materials are compared between SVRNA and a commercial program more used in this domain. Comparative analysis between this methods showed that SVRNA present best results. It has concluded, therefore, which the proposed system can be used in applications in Material Sciences field for microstructure segmentation and quantification in metallic materials, reducing the analyze time, and obtained accurate results.
510

ProposiÃÃo e avaliaÃÃo de algoritmos de filtragem adaptativa baseados na rede de kohonen / Proposition and evaluation of the adaptive filtering algorithms basad on the kohonen

Luis Gustavo Mota Souza 02 June 2007 (has links)
nÃo hà / A Rede Auto-OrganizÃvel de Kohonen (Self-Organizing Map - SOM), por empregar um algoritmo de aprendizado nÃo supervisionado, vem sendo tradicionalmente aplicada na Ãrea de processamento de sinais em tarefas de quantizaÃÃo vetorial, enquanto que redes MLP (Multi-layer Perceptron) e RBF (Radial Basis Function) dominam as aplicaÃÃes que exigem a aproximaÃÃo de mapeamentos entrada-saÃda. Este tipo de aplicaÃÃo à comumente encontrada em tarefas de filtragem adaptativa que podem ser formatadas segundo a Ãtica da modelagem direta e inversa de sistemas, tais como identificaÃÃo equalizaÃÃo de canais de comunicaÃÃo. Nesta dissertaÃÃo, a gama de aplicaÃÃes da rede SOM à estendida atravÃs da proposiÃÃo de filtros adaptativos neurais baseados nesta rede, mostrando que os mesmos sÃo alternativas viÃveis aos filtros nÃo-lineares baseados nas redes MLP e RBF. Isto torna-se possÃvel graÃas ao uso de uma tÃcnica recentemente proposta, Quantized Temporal Associative Memory - VQTAM), que basicamente usa a filosofia de chamada MemÃria Associativa Temporal por QuantizaÃÃo Vetorial (Vector )treinamento da rede SOM para realizar a quantizaÃÃo vetorial simultÃnea dos espaÃos de entrada e de saÃda relativos ao problema de filtragem analisado. A partir da tÃcnica VQTAM, sÃo propostos trÃs arquiteturas de filtros adaptativos baseadas na rede SOM, cujos desempenhos foram avaliados em tarefas de identificaÃÃo e equalizaÃÃo de canais nÃolineares. O canal usado nas simulaÃÃes foi modelado como um processo auto-regressivo de Gauss-Markov de primeira ordem, contaminado com ruÃdo branco gaussiano e dotado de nÃo-linearidade do tipo saturaÃÃo (sigmoidal). Os resultados obtidos mostram que filtros adaptativos baseados na rede SOM tÃm desempenho equivalente ou superior aos tradicionais filtros transversais lineares e aos filtros nÃo-lineares baseados na rede MLP.

Page generated in 0.0993 seconds