• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy storage properties of iridium oxides : model materials for the study of anionic redox / Propriétés de stockage de l'énergie dans les oxydes d'iridium : matériaux modèles pour l'étude du redox anionique

Perez, Arnaud 19 December 2017 (has links)
L’amélioration des systèmes de stockage d’énergie représente un défi majeur de la transition vers les véhicules électriques et les énergies renouvelables. Les accumulateurs Li-ion, qui ont déjà conquis le marché de l’électronique portatif, constitueront la technologie dominante pour réaliser cet objectif, et sont donc l’objet d’intense recherches afin d’améliorer leurs performances, en particulier en termes de capacité. Parmi les stratégies les plus prometteuse pour augmenter la capacité des matériaux de cathodes, beaucoup d’espoir est placé dans la préparation de matériaux riches en lithium, qui combinent l’activité électrochimique des cations (métaux de transitions) et des anions (oxygène). Cependant, l’activation des propriétés redox de l’oxygène est accompagnée de plusieurs problèmes qui freinent le développement industriel de ces matériaux. Il est donc nécessaire d’obtenir de solides connaissances fondamentales sur le phénomène de redox anionique pour résoudre ces problèmes. En utilisant des matériaux modèles à base d’iridium, ce travail explore comment l’activité de l’oxygène est influencé par son environnement local. Les propriétés électrochimiques des composés Na2IrO3 et Na(Li1/3Ir2/3)O2 sont étudiés afin de comprendre l’impact de la nature de l’ion alcalin. L’influence du ratio Li/M dans les oxydes de structure NaCl est étudié à travers la synthèse d’un nouveau composé de formule Li3IrO4, qui présente la plus haute capacité réversible parmi les matériaux d’insertion utilisés comme cathode. Cette famille de matériau est finalement étendue à des phases contenant des protons par une simple méthode d’échange cationique, et les propriétés électrochimiques d’un nouveau composé H3+xIrO4 sont étudiées, dévoilant de très bonnes propriétés de stockage de puissance en milieu aqueux. / Improving energy storage stands as a key challenge to facilitate the transition to electric vehicles and renewable energy sources in the next years. Li-ion batteries, which have already conquered the portable electronic market, will be the leading technology to achieve this goal and are therefore the focus of intense research activities to improve their performances, especially in terms of capacity. Among the most promising strategies to obtain high capacity cathode materials, the preparation of Li-rich materials combining the redox activity of cations (transition metals) and anions (oxygen) attracts considerable interest. However, activation of anionic redox in these high capacity materials comes with several issues that need to be solved prior their implementation in the energy storage market. Deep fundamental understanding of anionic redox is therefore required to go forward. Using model systems based on iridium, this work explores how the oxygen local environment can play a role on the activation of anionic redox. The electrochemical properties of Na2IrO3 and Na(Li1/3Ir2/3)O2 phases are studied to understand the impact of the alkali nature. The influence of the Li/M ratio in rocksalt oxides is investigated with the synthesis of a new material Li3IrO4, which presents the highest reversible capacity among intercalation cathode materials. The rich electrochemical properties of this family of iridate materials are finally extended by preparing proton-based materials through a simple ion-exchange reaction and the electrochemical properties of a new H3+xIrO4 material are presented, with high rate capability performances.
2

Nouveaux matériaux d'électrodes à haute densité d'énergie pour batteries Na-ion / High energy density new electrode materials for Na-ion batteries

Adamczyk, Evan 26 November 2018 (has links)
Dans les années à venir, la production d’Energie devra passer par l’utilisation de moyens plus respectueux de l’environnement tels que les énergies renouvelables. Leur caractère intermittent nécessite cependant la mise en place d’un stockage à grande échelle. Parmi les différentes technologies à disposition, les batteries Na-ion apparaissent comme une solution de choix grâce aux ressources de sodium illimitées. Dans ce contexte, nous nous sommes donc intéressés à la synthèse et la caractérisation de nouveaux matériaux d’électrodes positives pour batteries Na-ion. Les oxydes de métaux de transition et plus particulièrement le système Na-Mn-O a attiré notre attention pour les avantages que procure le manganèse en termes de non toxicité, de faible coût et d’abondance. Les phases Na4Mn2O5, lacunaire en oxygène, et Na2Mn3O7, lacunaire en cation manganèse, montrent des capacités spécifiques intéressantes par l’action de différents phénomènes redox. Na2Mn3O7 peut notamment être réduite, pour former la phase Na4Mn3O7 et oxydée, par l’action de l’activité redox de l’oxygène, donnant des capacités de 160 et 120 mAh/g, respectivement. Dans le but d’élargir l’étude à un métal de transition pouvant être oxydé à un état de valence +V, la phase isoformulaire Na2V3O7 a également été étudiée et un Na+ peut être réversiblement extrait de cette dernière. / N the coming years, the production of Energy will have to go through the use of more environmentally friendly means such as renewable energies. However, their intermittent nature requires the establishment of a large-scale storage. Among the various technologies available, Na-ion batteries appear as a solution of choice thanks to unlimited sodium resources. In this context, we are interested in the synthesis and characterization of new positive electrode materials for Na-ion batteries. The transition metal oxides, and more particularly the Na-Mn-O system, have drawn our attention to the benefits of manganese in terms of non-toxicity, low cost and abundance. The phase Na4Mn2O5 (with oxygen vacancies) and Na2Mn3O7 (with manganese vacancies) show interesting specific capacities by the action of various redox phenomena. Na2Mn3O7 may be reduced, to form the phase Na4Mn3O7 and oxidized, by the action of the oxygen redox activity, giving capacities of 160 and 120 mAh/g, respectively. In order to extend the study to a transition metal that can be oxidized to a +V valence state, Na2V3O7 has also been studied and one Na+ can be reversibly extracted from it.

Page generated in 0.0702 seconds